Series 2600A
System SourceMeter®
Instruments

Semiconductor Device Test
Applications Guide

Contains Programming Examples

KEITHLEY

A GREATER MEASURE OF CONFIDENCE

Although this Guide was originally developed as an applications resource for Series 2600 System SourceMeter®
instruments, the application information and sample test scripts provided are equally suitable for use with
Keithley’s newest SMU line, the Series 2600A. To implement any of these applications with the new models,

simply substitute the equivalent new model number for the original, that is, Model 2602A to replace Model
2602, Model 2612A to replace Model 2612, etc.

Table of Contents

Section 1 General Information

1.1 Introduction. 11
1.2 Hardware Configuration. 1-1
1.2.1 System Configuration 11
1.2.2 Remote/Local Sensing Considerations. 1-2
13 Graphing. 1-2

Section 2 Two-terminal Device Tests

21 Introduction. 21
2.2 Instrument Connections. 2-1
2.3 Voltage Coefficient Tests of Resistors 21
231 Test Configuration 21
23.2 Voltage Coefficient Calculations 2-1
233 Measurement Considerations 22
234 Example Program 1:
Voltage Coefficient Test 2-2
235 Typical Program 1 Results 23
23.6 Program 1 Description. 2-3
24 Capacitor Leakage Test. 23
241 Test Configuration 2-3
24.2 Leakage Resistance Calculations. 2-3
243 Measurement Considerations 2-4
244 Example Program 2:
Capacitor Leakage Test. 2-4
245 Typical Program 2 Results 2-4
24.6 Program 2 Description. 25
25 Diode Characterization. 25
251 TestConfiguration 25
25.2 Measurement Considerations 25
253 Example Program 3:
Diode Characterization 25
254 Typical Program 3 Results 2-6
255 Program 3 Description. 2-6
25.6 UsingLogSweeps 2-7
257 Using Pulsed Sweeps. 27
Section 3 Bipolar Transistor Tests
3.1 Introduction. 3-1

3.2 Instrument Connections. 31

33

3.4

35

3.6

Common-Emitter Characteristics 3-1
33.1 TestConfiguration 3-2
33.2 Measurement Considerations 3-2
33.3 Example Program 4:

Common-Emitter Characteristics 3-2
334 Typical Program 4 Results 3-3
335 Program 4 Description. 33
GummelPlot 33
34.1 Test Configuration 33
34.2 Measurement Considerations 3-4
343 Example Program 5: Gummel Plot. 3-4
344 Typical Program 5Results 35
345 Program 5 Description. 35
CurrentGain 3-6
351 Gain Calculations 3-6
35.2 Test Configuration for Search Method. . . . 3-6
353 Measurement Considerations 3-6
354 Example Program 6A: DC Current Gain

Using Search Method. 3-6
355 Typical Program 6AResults 37
35.6 Program 6A Description 3-7
357 Modifying Program 6A. 3-7
3.5.8 Configuration for Fast Current Gain Tests. . 3-8
359 Example Program 6B: DC Current Gain

Using Fast Method 3-8
35.10 Program 6B Description 39
3.5.11 Example Program 7: AC Current Gain. . . . 3-9
3.5.13 Typical Program 7 Results 3-10
35.14 Program 7 Description. 3-10
35.15 Modifying Program7. 3-10
Transistor Leakage Current 3-10
3.61 Test Configuration 3-10
3.6.2 Example Program 8: Iy, Test 3-11
3.6.3 Typical Program 8 Results 3-11
3.64 Program 8 Description. 3-11
3.65 Modifying Program8. 3-12

Section 4 FET Tests

4.1
4.2

Introduction. 4-1

Instrument Connections 41

4.3

4.4

45

Common-Source Characteristics 41
431 Test Configuration 41
43.2 Example Program 9: Common-Source

Characteristics 4-1
433 Typical Program 9 Results 4-2
434 Program 9 Description. 42
435 Modifying Program9. 43
Transconductance Tests 4-3
441 Test Configuration 43
44.2 Example Program 10: Transconductance

vs. Gate Voltage Test 4-4
443 Typical Program 10 Results 4-5
444 Program 10 Description 45
Threshold Tests 4-6
451 Search Method Test Configuration. 4-6
452 Example Program 11A: Threshold Voltage

Tests Using Search Method. 4-6
453 Program 11A Description 4-7
454 Modifying Program 11A 47

455 Self-bias Threshold Test Configuration . . . 4-7
45.6 Example Program 11B: Self-bias

Threshold Voltage Tests 4-8
457 Program 11B Description 49
458 Modifying Program 11B 4-9

Section 5 Using Substrate Bias

5.1
5.2

5.3

Introduction. 5-1

Substrate Bias Instrument Connections 5-1

5.2.1 Source-Measure Unit Substrate Bias
Connections and Setup 5-1

5.2.2 Voltage Source Substrate Bias Connections . 5-2

Source-Measure Unit Substrate Biasing 5-2
53.1 Program 12 Test Configuration 5-2
53.2 Example Program 12: Substrate Current

vs. Gate-Source Voltage 5-2
53.3 Typical Program 12 Results 5-4
534 Program 12 Description 5-4
535 Modifying Program 12.. 5-5
53.6 Program 13 Test Configuration 55

53.7 Example Program 13: Common-Source
Characteristics with Source-Measure Unit
Substrate Bias 5-5

53.8 Typical Program 13 Results 5-7

5.4

539 Program 13 Description 5-7
53.10 Modifying Program 13. 5-7
BJT Substrate Biasing. 5-7
54.1 Program 14 Test Configuration 57
54.2 Example Program 14: Common-Emitter
Characteristics with a Substrate Bias 57
543 Typical Program 14 Results. 59
544 Program 14 Description 5-9
545 Modifying Program 14 5-10

Section 6 High Power Tests

6.1

6.2

Introduction. 6-1
6.1.1 Program 15 Test Configuration 6-1
6.1.2 Example Program 15: High Current

Source and Voltage Measure 6-1
6.13 Program 15 Description 6-2
Instrument Connections 6-2
6.2.1 Program 16 Test Configuration 6-2
6.2.2 Example Program 16: High Voltage

Source and Current Measure 6-2
6.2.3 Program 16 Description 63

Appendix A Scripts

Section 2. Two-Terminal Devices. Al
Program 1. Voltage Coefficient of Resistors Al
Program 2. Capacitor Leakage Test A5
Program 3. Diode Characterization A-8

Program 3A. Diode Characterization Linear Sweep . A-8
Program 3B. Diode Characterization Log Sweep . . A-11
Program 3C. Diode Characterization Pulsed Sweep. A-14

Section 3. Bipolar Transistor Tests A-19
Program 4. Common-Emitter Characteristics A-19
Program 5. Gummel Plot. A-24

Section 6. High Power Tests. A-28
Program 6. Current Gain. A28
Program 6A. Current Gain (Search Method). A28
Program 6B. Current Gain (Fast Method) A-32
Program 7. AC Current Gain A-36
Program 8. Transistor Leakage (ICEO). A-39

Section 4. FET Tests A-43
Program 9. Common-Source Characteristics A-43
Program 10. Transconductance A-48

Program 11. Threshold.
Program 11A. Threshold (Search)
Program 11B. Threshold (Fast).

Section 5. Using Substrate Bias.

Program 12. Substrate Current vs. Gate-Source
Voltage (FET Iz vs. Vi) + « o o oo ..

Program 13. Common-Source Characteristics
with Substrate Bias

Program 14. Common-Emitter Characteristics
with Substrate Bias.
Section 6. High Power Tests.
Program 15. High Current with
Voltage Measurement
Program 16. High Voltage with
Current Measurement

List of lllustrations

Section 1 General Information

Section 5 Using Substrate Bias

Figure 1-1. Typical system configuration for applications. . .1-1 Figure 5-1. TSP-Link connections for two instruments . . .
. Figure 5-2. TSP-Link instrument connections.
Section 2 Two-terminal Device Tests Figure 5-3. Program 12 test configuration
Figure 2-1. Series 2600 two-wire connections Figure 5-4. Program 12 typical results: Iz vs. Vgg
(local sensing)o 2l Figure 5-5. Program 13 test configuration.
Figure 2-2. Voltage coefficient test configuration 21

Figure 5-6. Program 13 typical results: Common-source
Figure 2-3. Test configuration for capacitor leakage test . . .2-3 characteristics with substrate bias

Figure 2-4. Staircase sweep 25 Figure 5-7. Program 14 test configuration.

Figure 2-5. Test configuration for diode characterization. . .2-5 Figure 5-8. Program 14 typical results: Common-emitter

Figure 2-6. Program 3 results: Diode forward characteristics with substrate bias
characteristics 2-6
Section 6 High Power Tests

Section 3 Bipolar Transistor Tests Figure 6-1. High current (SMUs in parallel).

Figure 3-1. Test configuration for common-emitter tests . . 3-1 Figure 6-2. High voltage (SMUs in series)

Figure 3-2. Program 4 results: Common-emitter

characteristics 33 Appendix A Scripts
Figure 3-3. Gummel plot test configuration. 3-4
Figure 3-4. Program 5 results: Gummel plot 35

Figure 3-5. Test configuration for current gain tests
using searchmethod. 3-6

Figure 3-6. Test configuration for fast current gain tests . . 3-8
Figure 3-7. Configuration for I tests 3-11

Figure 3-8. Program 8 results: ;o vS. Vego -+« + + . . . 3-12

Section 4 FET Tests

Figure 4-1. Test configuration for common-source tests . . 4-2

Figure 4-2. Program 9 results: Common-source
characteristics 43

Figure 4-3. Configuration for transductance tests 4-4
Figure 4-4. Program 10 results: Transconductance vs. Vg . 4-5
Figure 4-5. Program 10 results: Transconductance vs. I, . . 4-5

Figure 4-6. Configuration for search method
threshold tests 4-6

Figure 4-7. Configuration for self-bias threshold tests . . . 4-8

Section 1
General Information

1.1 Introduction

The following paragraphs discuss the overall hardware and soft-
ware configurations of the system necessary to run the example
application programs in this guide.

1.2 Hardware Configuration

1.2.1 System Configuration

Figure 1-1 shows the overall hardware configuration of a typical
test system. The various components in the system perform a
number of functions:

Series 2600 System SourceMeter Instruments: System Source-
Meter instruments are specialized test instruments capable
of sourcing current and simultaneously measuring voltage, or
sourcing current and simultaneously measuring voltage. A single
Source-Measure Unit (SMU) channel is required when testing two-
terminal devices such as resistors or capacitors. Three- and four-
terminal devices, such as BJTs and FETs, may require two or more
SMU channels. Dual-channel System SourceMeter instruments,
such as the Models 2602, 2612, and 2636, provide two SMUs in a
half-rack instrument. Their ease of programming, flexible expan-
sion, and wide coverage of source/measure signal levels make
them ideal for testing a wide array of discrete components. Before
starting, make sure the instrument you are using has the source
and measurement ranges that will fit your testing specifications.

Test fixture: A test fixture can be used for an external test circuit.
The test fixture can be a metal or nonmetallic enclosure, and is
typically equipped with a lid. The test circuit is mounted inside
the test fixture. When hazardous voltages (>30Vrms, 42Vpeak)
will be present, the test fixture must have the following safety
requirements:

CPU
w/GPIB

tput
GPIB Oustpu
Cable Series 2600

System DUT

SourceMeter
Output
LO

Figure 1-1. Typical system configuration for applications

WARNING

To provide protection from shock hazards, an enclo-
sure should be provided that surrounds all live
parts. Nonmetallic enclosures must be constructed
of materials suitably rated for flammability and
the voltage and temperature requirements of the
test circuit. For metallic enclosures, the test fixture
chassis must be properly connected to safety earth
ground. A grounding wire (#18 AWG or larger)
must be attached securely to the test fixture at a
screw terminal designed for safety grounding. The
other end of the ground wire must be attached to a
known safety earth ground.

Construction Material: A metal test fixture must be connected to a
known safety earth ground as described in the WARNING above.

WARNING
A nonmetallic test fixture must be constructed
of materials that are suitable for flammability,
voltage, and temperature conditions that may exist
in the test circuit. The construction requirements
for a nonmetallic enclosure are also described in
the WARNING above.

Test Circuit Isolation: With the lid closed, the test fixture must
completely surround the test circuit. A metal test fixture must be
electrically isolated from the test circuit. Input/output connectors
mounted on a metal test fixture must also be isolated from the test
fixture. Internally, Teflon® standoffs are typically used to insulate
the internal pc-board or guard plate for the test circuit from a
metal test fixture.

Interlock Switch: The test fixture must have a normally open inter-
lock switch. The interlock switch must be installed so that, when
the lid of the test fixture is opened, the switch will open, and
when the lid is closed, the switch will close.

WARNING
When an interlock is required for safety, a separate
circuit should be provided that meets the require-
ments of the application to protect the operator reli-
ably from exposed voltages. The output enable pin

SECTION 1
General Information

on the digital I/0 port on the Models 2601 and 2602
System SourceMeter instruments is not suitable for
control of safety circuits and should not be used to
control a safety interlock. The Interlock pin on the
digital 1/0 port for the Models 2611, 2612, 2635, and
2636 can be used to control a safety interlock.

Computer: The test programs in this document require a PC with
IEEE-488 (GPIB) communications and cabling.

Software: Series 2600 System SourceMeter instruments each
use a powerful on-board test sequencer known as the Test Script
Processor (TSP™). The TSP is accessed through the instrument
communications port, most often, the GPIB. The test program, or
script, is simply a text file that contains commands that instruct
the instrument to perform certain actions. Scripts can be written
in many different styles as well as utilizing different programming
environments. This guide discusses script creation and manage-
ment using Keithley Test Script Builder (TSB), an easy-to-use pro-
gram that allows you to create, edit, and manage test scripts. For
more information on TSB and scripting, see Section 2: Using Test
Script Builder of the Series 2600 Reference Manual.

Connections and Cabling: High quality cabling, such as the
Keithley Model 2600-BAN or Model 7078-TRX-3 triaxial cables,
should be used whenever possible.

1.2.2 Remote/Local Sensing
Considerations

In order to simplify the test connections, most applications in
this guide use local sensing for the SMUs. Local sensing requires

connecting only two cables between the SMUs and the test fixture
(OUTPUT HI and OUTPUT LO).

When sourcing and/or measuring voltage in a low impedance
test circuit, there can be errors associated with IR drops in the
test leads. Using four-wire remote sense connections optimizes
voltage source and measure accuracy. When sourcing voltage,
four-wire remote sensing ensures that the programmed voltage is
delivered to the DUT. When measuring voltage, only the voltage
drop across the DUT is measured. Use four-wire remote sensing
for the following source-measure conditions:

¢ Sourcing and/or measuring voltage in low impedance (<1k€2)
test circuits.

¢ Enforcing voltage compliance limit directly at the DUT.

1.3 Graphing

All of the programs in this guide print the data to the TSB Instru-
ment Console. In some cases, graphing the data can help you visu-
alize the characteristics of the DUT. One method of graphing is to
copy and paste the data from the TSB Instrument Console and
place it in a spreadsheet program such as Microsoft Excel.

After the script has run, and the data has been returned to the
Instrument Console, you can highlight it by using the PC’s mouse:
depress the Control and ¢ (commonly written as Ctrl+c) keys on
the keyboard simultaneously, switch to an open Excel worksheet,
and depress Control and v simultaneously (Ctrl+v). The data
should now be placed in the open worksheet columns so you can
use the normal graphing tools available in your spreadsheet pro-
gram to graph the data as needed.

This Applications Guide is designed for Series 2600 instrument users who want to create their own scripts using the Test Script
Builder software. Other options include LabTracer® 2 software, the Automated Characterization Suite (ACS), and a LabVIEW driver.

1-2

Section 2
Two-terminal Device Tests

2.1 Introduction

Two-terminal device tests discussed in this section include voltage
coefficient tests on resistors, leakage tests on capacitors, and diode
characterization.

2.2 Instrument Connections

Figure 2-1 shows the instrument connections for two-terminal
device tests. Note that only one channel of a Source-Measure Unit
(SMU) is required for these applications. Be aware that multi-
channel models, such as the Model 2602, can be used, but are not
required to run the test program.

WARNING

Lethal voltages may be present. To avoid a possible
shock hazard, the test system should be equipped
with protective shielding and a safety interlock
circuit. For more information on interlock tech-
niques, see Section 10 of the Series 2600 Reference
manual.

Turn off all power before connecting or discon-
necting wires or cables.

NOTES

1. Remote sensing connections are recommended for optimum
accuracy. See paragraph 1.2.2 for details.

2. If measurement noise is a problem, or for critical, low level
applications, use shielded cable for all signal connections.

2.3 Voltage Coefficient
Tests of Resistors

Resistors often show a change in resistance with applied voltage
with high megohm resistors (>10°C2) showing the most pro-
nounced effects. This change in resistance can be characterized as
the voltage coefficient. The following paragraphs discuss voltage
coefficient tests using a single-channel Model 2601 System Source-
Meter instrument. The testing can be performed using any of the
Series 2600 System SourceMeter instruments.

2.3.1 Test Configuration

The test configuration for voltage coefficient measurements is
shown in Figure 2-2. One SMU sources the voltage across the
resistor under test and measures the resulting current through
the resistor.

2.3.2 Voltage Coefficient Calculations

Two different current readings at two different voltage values are
required to calculate the voltage coefficient. Two resistance read-

Series 2600 Rear Panel
CHANNEL A
| s CATI A\ a |
LOLO G HI G G G Hi
HI
DUT
LO
Figure 2-1. Series 2600 two-wire connections (local

sensing)

Output HI

Series 2600
System
SourceMeter
Channel A
Source V, v
Measure |
R=V/I

Resistor

Test <— Und
Fixture R Tgster

Output LO %

Figure 2-2. Voltage coefficient test configuration

2-1

SECTION 2
Two-terminal Device Tests

ings, R, and R,, are then obtained, and the voltage coefficient in
%/V can then be calculated as follows:
100 (R,—R))

Voltage Coefficient (%/V) = R (V,-V,)
1 27"

where: R, = resistance calculated with first applied voltage (V).

R, = resistance calculated with second applied voltage

V2).
For example, assume that the following values are obtained:
R, = 1.01 x 10°Q
R, =1 x 10Q)
(V,= V) = 10V
The voltage coefficient is:

3
Voltage Coefficient (%/V) = % =0.1%/V

2.3.3 Measurement Considerations

A couple of points should be noted when using this procedure to
determine the voltage coefficient of high megohm resistors. Keep
in mind that any leakage resistance in the test system will degrade
the accuracy of your measurements. To avoid such problems, use
only high quality test fixtures that have insulation resistances
greater than the resistances being measured. Using isolation resis-
tances 10% greater than the measured resistance is a good rule of
thumb. Also, make certain that the test fixture sockets are kept
clean and free of contamination as oils and dirt can lower the
resistance of the fixture and cause error in the measurement.

There is an upper limit on the resistance value that can be
measured using this test configuration. For one thing, even a
well-designed test fixture has a finite (although very high) path
isolation value. Secondly, the maximum resistance is determined
by the test voltage and current-measurement resolution of the test
instrument. Finally, the instrument has a typical output impe-
dance of 105€2. To maximize measurement accuracy with a given
resistor, use the highest test voltages possible.

2.3.4 Example Program 1: Voltage
Coefficient Test

Program 1 demonstrates programming techniques for voltage
coefficient tests. Follow the steps that follow to use the test pro-
gram. To reiterate, this test requires a single Source-Measure
channel. For this example, we will refer to the single-channel
Model 2601 System SourceMeter instrument. The test program

2-2

can be used with the multi-channel members of the Series 2600
family with no modification.

1. With the power off, connect the Model 2601 System Source-
Meter instrument to the computer’s I[EEE-488 interface.

2. Connect the test fixture to the instrument using appropriate
cables (see Figure 2-1).

3. Turn on the instrument, and allow the unit to warm up for
two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A
in this guide into the TSB script editing window (Program
1: Voltage Coefficient), manually enter the code from the
appendix, or import the TSP file ‘Volt _Co.tsp’ after down-
loading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50914.

6. Install the resistor being tested in the test fixture. The first
step in the operation requires us first to send the code to the
instrument. The simplest method is to right-click in the open
script window of TSB, and select ‘Run as TSP file’. This will
compile the code and place it in the volatile run-time memory
of the instrument. To store the program in non-volatile
memory, see the “TSP Programming Fundamentals” section of
the Series 2600 Reference Manual.

7. Once the code has been placed in the instrument run-time
memory, we can run it simply by calling the function ‘Volt
Co (). This can be done by typing the text ‘Volt _ Co ()’ after
the active prompt in the Instrument Console line of TSB.

8. In the program “Volt Cotsp’, the function Volt
Co(vlsrc, v2src) is created. The variables vlsrc and
v2src represent the two test voltage values applied to the
device-under-test (DUT). If they are left blank, the function
will use the default values given to these variables, but you can
specify what voltages are applied by simply sending voltages
that are in-range in the function call. As an example, if you
wanted to source 2V followed by 10V, simply send Volt _
Co(2, 10) to the instrument.

9. The instrument will then source the programmed voltages
and measure the respective currents through the resistor. The
calculated voltage coefficient and two resistance values will
then be displayed in the Instrument Console window of TSB.

SECTION 2
Two-terminal Device Tests

2.3.5 Typical Program 1 Results

The actual voltage coefficient you obtain using the program will,
of course, depend on the resistor being tested. The typical voltage
coefficient obtained for a 10GQ resistor (Keithley part number
R-319-10G) was about 8ppm/V (0.008%/V).

2.3.6 Program 1 Description

At the start of the program, the instrument is reset to default con-
ditions, and the error queue and data storage buffers are cleared.
The following configuration is then applied before the data col-
lection begins:

¢ Source V, DC mode

* Local sense

* 100mA compliance, autorange measure
¢ INPLC line cycle integration

* vlsrc: 100V

* v2src: 200V

The instrument then sources v1src, checks the source for com-
pliance in the function named Check _ Comp (), and performsa
measurement of the current if compliance is false. The source then
applies v2src and performs a second current measurement.

The function Calc _ Val() then performs the calculation of the
voltage coefficient based on the programmed source values and
the measured current values as described in Section 2.3.2, Voltage
Coefficient Calculations.

The instrument output is then turned off and the function

Note: If the compliance is true, the instrument will abort the pro-
gram and print a warning to the TSB window. Check the DUT
and cabling to make sure everything is connected correctly and
re-run the test.

2.4 Capacitor Leakage Test

One important parameter associated with capacitors is leakage
current. Once the leakage current is known, the insulation resist-
ance can be easily calculated. The amount of leakage current in
a capacitor depends both on the type of dielectric as well as the
applied voltage. With a test voltage of 100V, for example, ceramic
dielectric capacitors have typical leakage currents in the nanoamp
to picoamp range, while polystyrene and polyester dielectric
capacitors exhibit a much lower leakage current—typically in the
femtoamp (10-A) range

2.4.1 Test Configuration

Figure 2-3 shows the test configuration for the capacitor leakage
test. The instrument sources the test voltage across the capacitor,
and it measures the resulting leakage current through the device.
The resistor, R, is included for current limiting, and it also helps
to reduce noise. A typical value for R is 1IMQ, although that value
can be decreased for larger capacitor values. Note, however, that
values less than 10kQ are not recommended.

2.4.2 Leakage Resistance Calculations

Once the leakage current is known, the leakage resistance can
easily be calculated from the applied voltage and leakage current
value as follows:

Print Dataf() is run to print the data to the TSB window. R=VI
Output HI le=—"
Series 2600 l "
Capacitor
System I cL o Un%er
SourceMeter gk Test
Channel A Fixture))
Source V, v I?es_lstor R required to
Measure | limit current and
reduce noise.
4 Typical value: 1TMQ
Output LO

Figure 2-3. Test configuration for capacitor leakage test

v

Minimum value: 10kQ

2-3

SECTION 2
Two-terminal Device Tests

For example, assume that you measured a leakage current of 25nA
with a test voltage of 100V. The leakage resistance is simply:

R =100/25nA = 4GQ (4 X 10°Q)

2.4.3 Measurement Considerations

After the voltage is applied to the capacitor, the device must be
allowed to charge fully before the current measurement can be
made. Otherwise, an erroneous current, with a much higher
value, will be measured. The time period during which the capac-
itor charges is often termed the “soak” time. A typical soak time is
seven time constants, or 7RC, which would allow settling to less
than 0.1% of final value. For example, if R is IMC2, and C is 1uF,
the recommended soak time is seven seconds. With small leakage
currents (<1nA), it may be necessary to use a fixed measurement
range instead of auto ranging.

2.4.4 Example Program 2:
Capacitor Leakage Test

Program 2 performs the capacitor leakage test described above.
Follow the steps that follow to run the test using this program.

WARNING
Hazardous voltage may be present on the capacitor
leads after running this test. Discharge the capac-
itor before removing it from the test fixture.

1. With the power off, connect the instrument to the computer’s
IEEE-488 interface.

2. Connect the test fixture to the instrument using appropriate
cables.

3. Turn on the instrument, and allow the unit to warm up for
two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 2),
manually enter the code from the appendix, or import the TSP
file ‘Cap _Leak.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: http://www.
keithley.com/data?asset=50927.

6. Discharge and install the capacitor being tested, along with
the series resistor, in the appropriate axial component sockets
of the test fixture.

2-4

WARNING
Care should be taken when discharging the capac-
itor, as the voltage present may represent a shock
hazard!

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘Cap _ Leak()’ This can be done by typing the text
‘Cap _ Leak()’ after the active prompt in the Instrument
Console line of TSB.

9. In the program ‘Cap_Leak.tsp’, the function Cap
Leak(vsrc) is created. The variable vsrc represents the
test voltage value applied to the device-under-test (DUT). If
it is left blank, the function will use the default value given
to the variable, but you can specify what voltage is applied
by simply sending a voltage that is in-range in the function
call. As an example, if you wanted to source 100V, simply send
Cap _ Leak(100) to the instrument.

10. The instrument will then source the programmed voltage and
measure the respective current through the capacitor. The
measured current leakage and calculated resistance value will
then be displayed in the Instrument Console window of TSB.

NOTE
The capacitor should be fully discharged before run-
ning the test. This can be accomplished by sourcing 0V
on the device for the soak time or by shorting the leads
together. Care should be taken because some capacitors
can hold a charge for a significant period of time and
could pose an electrocution risk.

The soak time, denoted in the code as the variable 1 _ soak,
has a default value of 10s. When entering the soak time, choose
a value of at least 7RC to allow settling to within 0.1% of final
value. At very low currents (<500fA), a longer settling time may
be required to compensate for dielectric absorption, especially at
high voltages.

2.4.5 Typical Program 2 Results

As pointed out earlier, the exact value of leakage current will
depend on the capacitor value as well as the dielectric. A typical
value obtained for 1uF aluminum electrolytic capacitor was about
80nA at 25V.

SECTION 2
Two-terminal Device Tests

2.4.6 Program 2 Description

At the start of the program, the instrument is reset to default con-
ditions, the error queue, and data storage buffers are cleared. The
following configuration is then applied before the data collection
begins:

¢ Source V, DC mode

* Local sense

* 10mA compliance, autorange measure
* 1 NPLC Line cycle integration

e vsrc: 40V

The instrument then sources vsrc, checks the source for compli-
ance in the function named Check _ Comp (), and performs a
measurement of the current if compliance is false.

The function Calc _ Val() then performs the calculation of
the leakage resistance based on the programmed source value
and the measured current value as described in paragraph 2.4.2,
Leakage Resistance Calculations.

The instrument output is then turned off and the function
Print Data() is run to print the data to the TSB window.

Note: If the compliance is true, the instrument will abort the pro-
gram and print a warning to the TSB window. Check the DUT
and cabling to make sure everything is connected correctly and
re-run the test.

2.5 Diode Characterization

The System SourceMeter instrument is ideal for characterizing
diodes because it can source a current through the device, and
measure the resulting forward voltage drop (V;) across the device.
A standard technique for diode characterization is to perform a
staircase sweep (Figure 2-4) of the source current from a starting
value to an end value while measuring the voltage at each current
step. The following paragraphs discuss the test configuration and
give a sample test program for such tests.

2.5.1 Test Configuration

Figure 2-5 shows the test configuration for the diode character-
ization test. The System SourceMeter instrument is used to source
the forward current (Iy) through the diode under test, and it also
measures the forward voltage (V;) across the device. I; is swept
across the desired range of values, and V; is measured at each cur-
rent. Note that the same general configuration could be used to

Staircase Sweep

Sourced Value

Time

Figure 2-4. Staircase sweep

Output HI I W

Series 2600
System
SourceMeter ! Diode ~N Test
Channel A U'}‘Zg{ N Vv Fixture
Sweep I, v e
Measure V,

Output LO %

Figure 2-5. Test configuration for diode characterization

measure leakage current by reversing the diode, sourcing voltage,
and measuring the leakage current.

2.5.2 Measurement Considerations

Because the voltages being measured will be fairly small (=0.6V),
remote sensing can be used to minimize the effects of voltage
drops across the test connections and in the test fixture. Remote
sensing requires the use of the Sense connections on the System
SourceMeter channel being used, as well as changing the code to
reflect remote sensing. For more information on remote sensing,
see the Series 2600 Reference Manual.

2.5.3 Example Program 3:
Diode Characterization

Program 3 demonstrates the basic programming techniques for
running the diode characterization test. Follow these steps to use
this program:

SECTION 2
Two-terminal Device Tests

1. With the power off, connect the instrument to the computer’s
IEEE-488 interface.

2. Connect the test fixture to the instrument using appropriate
cables.

3. Turn on the instrument, and allow the unit to warm up for
two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 3A,
Diode Forward Characterization), manually enter the code
from the appendix, or import the TSP file ‘Diode_Fwd_Char.
tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: http://wwuw.
keithley.com/dataZasset=50924.

6. Install a small-signal silicon diode such as a IN914 or 1N4148
in the appropriate axial socket of the test fixture.

7. Now, we must send the code to the instrument. One method
is simply to right-click in the open script window of TSB, and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “TSP Program-
ming Fundamentals” section of the Series 2600 Reference
Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘Diode_Fwd_Char()’. This can be done by typing the text
‘Diode Fwd Char() after the active prompt in the
Instrument Console line of TSB.

9. Inthe program ‘Diode_Fwd_Char.tsp’, the function Diode
Fwd Char(ilevel, start, stop, steps) is
created. The variable ilevel represents the current value
applied to the device-under-test (DUT) both before and after
the staircase sweep has been applied. The start variable
represents the starting current value for the sweep, stop repre-
sents the end current value, and steps represents the number
of steps in the sweep. If any values are left blank, the function
will use the default value given to that variable, but you can
specify what voltage is applied by simply sending a voltage that
is in-range in the function call.

10. As an example, if you wanted to configure a test that would
source OmA before and after the sweep, with a sweep start
value of 1mA, stop value of 10mA, and 10 steps, you would

2-6

Diode Forward Characteristics
9.00E-01

8.00E-01 - Voltage Data (V)

7.00E-01 4

6.00E-01

5.00E-01

4.00E-01

Voltage (Volts)

3.00E-01

2.00E-01

1.00E-01

0.00E-00 T T T T
0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03

Current (Amps)

1.00E-02

Figure 2-6. Program 3 results: Diode forward
characteristics

simply send Diode Fwd _ Char(0,
10) to the instrument.

0.001, 0.01,

11. The instrument will then source the programmed current
staircase sweep and measure the respective voltage at each
step. The measured and sourced values are then printed to
the screen (if using TSB). To graph the results, simply copy
and paste the data into a spreadsheet such as Microsoft Excel
and chart.

2.5.4 Typical Program 3 Results

Figure 2-6 shows typical results obtained using Example Program
3. These results are for a 1N914 silicon diode.

2.5.5 Program 3 Description

At the start of the program, the instrument is reset to default con-
ditions, the error queue, and data storage buffers are cleared. The
following configuration is then applied before the data collection
begins:

¢ Source I

* Local sense

¢ 10V compliance, autorange measure

¢ Ilevel: 0A

¢ start: 0.001A

* stop: 0.01A

* steps: 10

The instrument then sources ilevel, dwells 1 delay sec-
onds, and begins the staircase sweep from start to stop in

steps. At each current step, both the current and voltage are
measured.

SECTION 2
Two-terminal Device Tests

The instrument output is then turned off and the function
Print Data() isrun to print the data to the TSB window. To
graph the results, simply copy and paste the data into a spread-
sheet such as Microsoft Excel and chart.

2.5.6 Using Log Sweeps

With some devices, it may be desirable to use a log sweep because
of the wide range of currents necessary to perform the test. Pro-
gram 3B performs a log sweep of the diode current.

If your computer is currently connected to the Internet, you can
click on this link to begin downloading ‘Diode Fwd_Char Log.
tsp’ bitp:/lwww.keithley.com/data’asset=50923.

Note that the start and stop currents are programmed just as
before, although with a much wider range than would be practical
with a linear sweep. With log sweep, however, the points param-
eter, which defines the number of points per decade, replaces the
steps parameter that is used with the linear sweep.

To run the Log sweep, we must send the code to the instrument.
One method is simply to right-click in the open script window
of TSB, and select ‘Run as TSP file’. This will compile the code

and place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP Pro-
gramming Fundamentals” section of the Series 2600 Reference
Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the function
‘Diode_Fwd_Char_Log(). This can be done by typing the text
‘Diode Fwd Char Log()’ after the active prompt in the
Instrument Console line of TSB.

2.5.7 Using Pulsed Sweeps

In some cases, it may be desirable to use a pulsed sweep to avoid
device self-heating that could affect the test results. Program 3C
performs a staircase pulse sweep. In this program, there are two
additional variables ton and toff, where ton is the source on dura-
tion and toff is the source off time for the pulse. During the toff
portions of the sweep, the source value is returned to the ilevel
bias value.

If your computer is currently connected to the Internet, you can

click on this link to begin downloading ‘Diode_Fwd_Char_Pulse.
tsp’ bitp:/lwww.keithley.com/data’asset=50922.

27

SECTION 2
Two-terminal Device Tests

2-8

Section 3
Bipolar Transistor Tests

3.1 Introduction

Bipolar transistor tests discussed in this section include: tests to
generate common-emitter characteristic curves, Gummel plot,
current gain, and transistor leakage tests.

3.2 Instrument Connections

Figure 3-1 shows the instrument connections for the bipolar
transistor tests outlined in this section. Two Source-Measure
channels are required for the tests (except for the leakage current
test, which requires only one Source-Measure channel).

Keithley Model 2600-BAN cables or Model 7078-TRX-3 low noise
triaxial cables are recommended to make instrument-to-test fix-
ture connections. In addition, the safety interlock connecting
cables must be connected to the instrument and fixture if using
instrumentation capable of producing greater than 42V.

WARNING

Lethal voltages may be exposed when working with
test fixtures. To avoid a possible shock hazard, the
fixture must be equipped with a working safety
interlock circuit. For more information on the

Transistor

Under Test

Output HI

Series 2600
System
SourceMeter
Channel B

Sweep I,

Output LO

interlock of the Series 2600, please see the Series
2600 Reference Manual.

NOTES

Remote sensing connections are recommended for
optimum accuracy. See paragraph 1.2.2 for details.

If measurement noise is a problem, or for critical, low
level applications, use shielded cable for all signal
connections.

3.3 Common-Emitter
Characteristics

Common-emitter characteristics are probably the most familiar
type of curves generated for bipolar transistors. Test data used to
generate these curves is obtained by sweeping the base current
(I5) across the desired range of values at specific increments. At
each be current value, the collector-emitter voltage (V) is swept
across the desired range, again at specific increments. At each Vg,
value, the collector current (I;) is measured.

Once the data is collected, it is conveniently printed (if using TSB).
You can then use the copy-and-paste method to place the data
into a spreadsheet program such as Microsoft Excel. Common

};V

Output HI

Series 2600
System
SourceMeter

Channel A
Sweep V,,
Measure I,

Test

€ Fixture

v

Output LO

Figure 3-1. Test configuration for common-emitter tests

Vv

SECTION 3
Bipolar Transistor Tests

plotting styles include graphing I.. vs. Vi for each value of I. The
result is a family of curves that shows how I varies with V,; at
specific I values.

3.3.1 Test Configuration

Figure 3-1 shows the test configuration for the common-emitter
characteristic tests. Many of the transistor tests performed require
two Source-Measure Units (SMUs). The Series 2600 System
SourceMeter instruments have dual-channel members such as the
Model 2602, 2612, and 2636. This offers a convenient transistor
test system all in one box. The tests can be run using two single-
channel instruments, but the code will have to be modified to
do so.

In this test, SMUB sweeps I, across the desired range, and SMUA
sweeps V¢ and measures I.. Note that an NPN transistor is shown
as part of the test configuration. A small-signal NPN transistor
with an approximate current gain of 500 (such as a 2N5089) is
recommended for use with the test program below. Other similar
transistors such as a 2N3904 may also be used, but the program
may require modification.

3.3.2 Measurement Considerations

A fixed delay period of 100ms, which is included in the program,
may not be sufficient for testing some devices. Also, it maybe nec-
essary to change the programmed current values to optimize the
tests for a particular device.

3.3.3 Example Program 4:
Common-Emitter Characteristics

Program 4 can be used to run common-emitter characteristic tests
on small-signal NPN transistors. In order to run the program,
follow these steps:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate cables
(see Figure 3-1).

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 4),
manually enter the code from the appendix, or import the TSP
file ‘BIT Comm_Emit.tsp’ after downloading it to your PC.

3-2

10.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50930.

Install an NPN transistor such as a 2N5089 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘BIT _ Comm _ Emit ()’ This can be done by typing
the text ‘BJT _ Comm _ Emit ()’ after the active prompt in
the Instrument Console line of TSB.

In the program ‘BJ]T Comm_Emit.tsp', the function BJT _
Comm _Emit(istart, istop, isteps, vstart,
vstop, vsteps) is created.

* istart represents the sweep start current value on the
base of the transistor

* istop represents the sweep stop value
¢ isteps is the number of steps in the base current sweep

* vstart represents the sweep start voltage value on the
collector-emitter of the transistor

* vstop represents the sweep stop voltage value
* vsteps is the number of steps in the base current sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the base current
swept from 1uA to 100uA in 10 steps, and the collector-emitter
voltage (Vo) to be swept from 0 to 10V in 1V steps, you would
send BJT _Comm _ Emit(1E-6, 100E-6, 10, 0, 10,

10) to the instrument.

The instrument will then source the programmed start current
on the base, sweep the voltage on the collector-emitter, and
measure the respective current through the collector-emitter.
The base current will be incremented and the collector-emitter
sweep will take place again. After the final base source value
and associated collector-emitter sweep, the collector-emitter
voltage (V;), measured collector-emitter current (I;), and
base current (I) values will then be displayed in the Instru-
ment Console window of TSB.

SECTION 3
Bipolar Transistor Tests

Common-Emitter Characteristics (2N5089)

5.00E-02
4.00E-02
@ 3.00E-02 -
a I, =50pA
E I, =40pA
- 2.00E-02 - IB - 30pA
1, = 20pA
1.00E-02 +
1, = 10pA
0.00E+00 ¢ T T T T T T T T
0 1 2 3] 4 6 7 8 9 10
V,, (Volts)

Figure 3-2. Program 4 results: Common-emitter characteristics

3.3.4 Typical Program 4 Results

Figure 3-2 shows typical results generated by Example Program 4.
A 2N5089 NPN transistor was used to generate these test results.

3.3.5 Program 4 Description

For the following program description, refer to the program
listing below.

¢ Source I

* IV compliance, 1.1V range

* Local sense

* istart current: 10M

* istop current: 50uA

* isteps:5

Following SMUB setup, SMUA, which sweeps VCE and measures
IC, is programmed as follows:

* Source V

* Local sensing

* 100mA compliance, autorange measure

¢ 1 NPLC Line cycle integration (to reduce noise)

e vstart: 0V

e vstop: 10V

* vsteps: 100

Once the two units are configured, the SMUB sources istart,
SMUA sources vstart, and the voltage (Vi) and current (Ig;)

for SMUA are measured. The source value for SMUA is then
incremented by 1 _ vstep, and the sweep is continued until
the source value reaches vstop. Then, SMUB is incremented by
1 istep and SMUA begins another sweep from vstart to
vstop in vsteps. This nested sweeping process continues until
SMUB reaches istop.

The instrument output is then turned off and the function
Print Data() is run to print the data to the TSB window. To
graph the results, simply copy and paste the data into a spread-
sheet such as Microsoft Excel and chart.

3.4 Gummel Plot

A Gummel plot is often used to determine current gain variations
of a transistor. Data for a Gummel plot is obtained by sweeping
the base-emitter voltage (Vy;) across the desired range of values at
specific increments. At each Vy; value, both the base current (Iy)
and collector current (I.) are measured.

Once the data are taken, the data for I, I, and Vy; is returned to
the screen. If using TSB, a plot can be generated using the “copy-
and-paste” method in a spreadsheet program such as Microsoft
Excel. Because of the large differences in magnitude between I
and I, the Y axis is usually plotted logarithmically.

3.4.1 Test Configuration

Figure 3-3 shows the test configuration for Gummel plot tests.
SMUB is used to sweep Vy; across the desired range, and it also

33

SECTION 3
Bipolar Transistor Tests

Transistor)
Under Test L
\ \ Output HI
— Vee Teat Series 2600
Output HI X / Fixture System
Series 2600 Vee > SourceMeter
System | Channel A
SourceMeter v Source V,
Channel B Measure |,
Sweep V.. |V
Measure I, Output LO
Output LO

Vv

Figure 3-3. Gummel plot test configuration

measures ;. SMUA sets V. to the desired fixed value, and it also
measures I.

Due to the low current measurements associated with this type of
testing, the Keithley Model 2636 System SourceMeter instrument
is recommended. Its low level current measurement capabilities
and dual-channel configuration are ideal for producing high
quality Gummel plots of transistors.

3.4.2 Measurement Considerations

As written, the range of Vg test values is from 0V to 0.7V in 0.01V
increments. It may be necessary, however, to change these limits
for best results with your particular device. Low currents will be
measured so take the usual low current precautions.

3.4.3 Example Program 5: Gummel Plot

Program 5 demonstrates the basic programming techniques
for generating a Gummel plot. Follow these steps to run this
program:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s [EEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

. You can simply copy and paste the code from Appendix A in

this guide into the TSB script editing window (Program 5),
manually enter the code from the appendix, or import the TSP
file ‘Gummel.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/www.
keithley.com/dataZasset=50918

. Install an NPN transistor such as a 2N5089 in the appropriate

transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

. Once the code has been placed in the instrument run-time

memory, we can run it at any time simply by calling the
function ‘Gummel(). This can be done by typing the text
‘Gummel ()’ after the active prompt in the Instrument Con-
sole line of TSB.

. In the program ‘Gummel.tsp’, the function Gummel

(vbestart, vbestop, vbesteps, vcebias) is
created.

* vbestart represents the sweep start voltage value on
the base of the transistor

* vbestop represents the sweep stop value

* vbesteps is the number of steps in the base
voltage sweep

SECTION 3
Bipolar Transistor Tests

* vcebias represents the voltage bias value on the
collector-emitter of the transistor

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the base voltage
swept from 0.1V to 1V in 10 steps, and the collector-emitter
voltage (V) to be biased 5V, you would send Gumme1 (0.1,
1, 10, 5) to the instrument.

10. The base-emitter voltage will be swept between 0V and 0.7V in
0.01V increments, and both I and I will be measured at each
Vy; value. Note that a fixed collector-emitter voltage of 10V is
used for the tests.

11. Once the sweep has been completed, the data (I, I, and Vy;)
will be presented in the Instrument Console window of TSB.

3.4.4 Typical Program 5 Results

Figure 3-4 displays a typical Gummel plot as generated by
Example Program 5. Again, the transistor used for this example
was a 2N5089 NPN silicon transistor.

3.4.5 Program 5 Description
SMUB, which sweeps Vy; and measures I, is set up as follows:

¢ Source V
* 1mA compliance, autorange measure
* Local sensing

* 1 NPLC Line cycle integration

* vbestart: OV
* vbestop: 0.7V
* vbesteps: 70

SMUA, which sources V,; and measures I, is programmed in the
following manner:

* Source V

* Local sensing

* 100mA compliance, autorange measure
* 1 NPLC Line cycle integration

¢ Constant sweep (number of points programmed to 71),
Ve = 10V

* vcebias: 10V

Following unit setup, both unit triggers are armed, and the instru-
ments are placed into the operate mode (lines 320 and 330).

Once triggered, SMUB sets Vy; to the required value, and SMUA
then sets V. and measures I at I;. At the end of its measurement,
SMUB increments Vg, and the cycle repeats until Vg reaches the
value set for vbestop.

During the test, Vg, I, and I are measured. Once the test has
completed, the data is written to the Instrument Console of TSB
and can be graphed in a spreadsheet program using the “copy-
and-paste” method of data transfer.

Gummel Plot (2N5089)

1.00E+00

1.00E-02 -

1.00E-04

1.00E-06

1.00E-08

Current (Amps)

1.00E-10

1.00E-12 4

1.00E-14

Vg vs. |

Ve vs. I

T T T
0 0.1 0.2 0.3

T T T
0.4 0.5 0.6 0.7

V.. (Volts)

Figure 3-4. Program 5 results: Gummel plot

3-5

SECTION 3
Bipolar Transistor Tests

3.5 Current Gain

The following paragraphs discuss two methods for determining
DC current gain, as well as ways to measure AC current gain.

3.5.1 Gain Calculations

The common-emitter DC current gain of a bipolar transistor is
simply the ratio of the DC collector current to the DC base current
of the device. The DC current gain is calculated as follows:

=l
8=

where: 8 = current gain
I. = DC collector current

I; = DC base current

Often, the differential or AC current gain is used instead of the
DC value because it more closely approximates the performance
of the transistor under small-signal AC conditions. In order to
determine the differential current gain, two values of collector
current (I, and I,) at two different base currents (I, and I,) are
measured. The current gain is then calculated as follows:

Al
where: 82 = AC current gain
Alg =lp-lg
Aly =11y
Under Test

Output HI

Series 2600
System
SourceMeter

Channel B
Set |, for
desired I,

Output LO

Tests for both DC and AC current gain are generally done at one
specific value of V.. AC current gain tests should be performed
with as small a Al}; as possible so that the device remains in the
linear region of the curve.

3.5.2 Test Configuration for
Search Method

Figure 3-5 shows the test configuration for the search method of
DC current gain tests and AC gain tests. A dual-channel System
SourceMeter instrument is required for the test. SMUB is used
to supply I, and I,. SMUA sources V., and it also measures the
collector currents I; and I,.

3.5.3 Measurement Considerations

When entering the test base currents, take care not to enter values
that will saturate the device. The approximate base current value
can be determined by dividing the desired collector current value
by the typical current gain for the transistor being tested.

3.5.4 Example Program 6A: DC Current
Gain Using Search Method

Use Program 0A to perform DC current gain tests on bipolar tran-
sistors. Proceed as follows:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the System SourceMeter instrument and allow the
unit to warm up for two hours for rated accuracy.

A/ I SourceMeter

Output HI

Series 2600
System

v Test
€ Fixture

Channel A
Vv Source V,
Measure I,

Output LO

Vv

Figure 3-5. Test configuration for current gain tests using search method

3-6

SECTION 3
Bipolar Transistor Tests

10.

11.

Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 6A),
manually enter the code from the appendix, or import the TSP
file ‘DC_Gain_Search.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50925

Install an NPN transistor such as a 2N5089 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘DC_Gain_Search(). This can be done by typing the text
‘DC _ Gain Search()’ after the active prompt in the
Instrument Console line of TSB.

In the program ‘DC_Gain_Search.tsp’, the function DC
Gain Search(vcesource, lowib, highib,
targetic) is created.

* vcesource represents the voltage value on the
collector-emitter of the transistor

¢ lowib represents the base current low limit for the
search algorithm

* highib represents the base current high limit for the
search algorithm

* targetic represents the target collector current for the
search algorithm

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in
the function call. As an example, if you wanted the collector-
emitter voltage (V) to be 2.5V, the base current low value
at 10nA, the base current high value at 100nA, and the
target collector current to be 10uA, you would send DC
Gain Search(2.5,10E-9, 100E-9, 10E-6) to the
instrument.

The sources will be enabled, and the collector current of
the device will be measured. The program will perform an

iterative search to determine the closest match to the target
I (within £5%). The DC current gain of the device at specific
I and I; values will then be displayed on the computer CRT.
If the search is unsuccessful, the program will print “Itera-
tion Level Reached”. This is an error indicating that the search
reached its limit. Recheck the connections, DUT, and variable
values to make sure they are appropriate for the device.

12. Once the sweep has been completed, the data (I, I, and R)
will be presented in the Instrument Console window of TSB.

3.5.5 Typical Program 6A Results

A typical current gain for a 2N5089 would be about 500. Note,
however, that the current gain of the device could be as low as
300 or as high as 800.

3.5.6 Program 6A Description

Initially, the iteration variables are defined and the instrument is
returned to default conditions. SMUB, which sources I, is set up
as follows:

¢ Source I
* [V compliance, 1.1V range

* Local sense

SMUA, which sources V; and measures I, is configured as
follows:

* Source V
* Local sense

¢ 100mA compliance, autorange measure

Once the SMU channels have been configured, the sources values
are programmed to 0 and the outputs are enabled. The base cur-
rent (Iy) is sourced and the program enters into the binary search
algorithm for the target I by varying the V,; value, measuring the
I, comparing it to the target I, and adjusting the V,; value, if nec-
essary. The iteration counter is incremented each cycle through
the algorithm. If the number of iterations has been exceeded, a
message to that effect is displayed, and the program halts.

Assuming that the number of iterations has not been exceeded,
the DC current gain is calculated and displayed in the Instrument
Console window of the TSB.

3.5.7 Modifying Program 6A

For demonstration purposes, the I target match tolerance is set
to =5%. You can, of course, change this tolerance as required.
Similarly, the iteration limit is set to 20. Again, this value can be
adjusted for greater or fewer iterations as necessary. Note that it

3-7

SECTION 3
Bipolar Transistor Tests

may be necessary to increase the number of iterations if the target
range is reduced.

3.5.8 Configuration for Fast
Current Gain Tests

Figure 3-6 shows the test configuration for an alternate method
of current gain tests—one that is much faster than the search
method discussed previously. SMUB is used to supply Ve, and
it also measures I;. SMUA sources the emitter current (Iy) rather
than the collector current (I;). Because we are sourcing emitter
current instead of collector current, the current gain calculations
must be modified as follows:

-1y
Iy

WARNING

When a System SourceMeter instrument is pro-
grammed for remote sensing, hazardous voltage
may be present on the SENSE and OUTPUT termi-
nals when the unit is in operation regardless of the
programmed voltage or current. To avoid a possible
shock hazard, always turn off all power before
connecting or disconnecting cables to the Source-
Measure Unit or the associated test fixture.

NOTE

Because of the connection convention used, I, and
V¢ must be programmed for opposite polarity than
normal. With an NPN transistor, for example, both Vi
and I; must be negative.

3.5.9 Example Program 6B: DC Current
Gain Using Fast Method

Use Program 6B in Appendix A to demonstrate the fast method of
measuring current gain of bipolar transistors. Proceed as follows:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate cables.
Note that OUTPUT HI of SMUB is connected to the base of the
DUT, and SENSE HI of SMUB is connected to the emitter.

3. Turn on the System SourceMeter instrument and allow the
unit to warm up for two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 0B),
manually enter the code from the appendix, or import the TSP
file ‘DC_Gain_Fast.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50926

6. TInstall an NPN transistor such as a 2N5089 in the appropriate
transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.

Sense LO

Output LO

Series 2600
System
SourceMeter

Channel B
Source V, |
Measure I,

Sense HI Output HI

Output LO
Series 2600
System
I SourceMeter
Channel A
Source I
Output HI
Test
E " Fixture

Figure 3-6. Test configuration for fast current gain tests

3-8

SECTION 3
Bipolar Transistor Tests

10.

11.

To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘DC_Gain_Search_Fast(). This can be done by typing
the text DC_ Gain Search Fast()’ after the active
prompt in the Instrument Console line of TSB.

In the program ‘DC_Gain_Search Fast.tsp’, the function
DC _Gain _Search Fast(vcesource, istart,
istop, isteps) is created.

* vcesource represents the voltage value on the
collector-emitter of the transistor

* istart represents the start value for the base current
sweep

* istop represents the stop value for the base current
sweep

* isteps represents the number of steps in the base
current sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in
the function call. As an example, if you wanted to have the
collector-emitter voltage (V¢;) be 2.5V, the base current sweep
start value at 10nA, the base current sweep stop value at
100nA, and the number of steps to be 10, you would send
DC _Gain _Search Fast(2.5,10E-9, 100E-9,
10) to the instrument.

The sources will be enabled, and the collector current of the
device will be measured.

Once the sweep has been completed, the data (I, I;, and R)
will be presented in the Instrument Console window of TSB.
Note that the program reverses the polarity of the emitter cur-
rents in order to display true polarity.

3.5.10 Program 6B Description

Initially, both units are returned to default conditions. SMUB,
which sources V,; and measures I, is set up as follows:

Source V
1mA compliance, autorange measure
Remote sense

vcesource: =10V

SMUA, which sources I, is configured as follows:

Source I

Local sense

¢ 11V compliance, autorange
* istart:—-IlmA

* istop:-10mA

* isteps: 10

* 10ms delay

e Staircase sweep mode

Both SMU outputs are then zeroed and enabled. Next, SMUB
sources V; and SMUA begins the current sweep on the emitter
current (I;) from istart to istop in isteps. At each point in the
sweep, SMUB measures the base current (I). Upon completion of
the sweep, the current gain (R) is calculated and the data (I, I,
and R) is printed to the Instrument Console of the TSB.

3.5.11 Example Program 7:
AC Current Gain

NOTE
For the sake of simplicity, this program does not include
the iterative search algorithm included in Program 0A.
To test at a specific IC value, first use Program 6A to
determine the base current at that target value, and
enter I values slightly higher and lower when prompted
to do so in Program 7.

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 7),
manually enter the code from the appendix, or import the TSP
file AC_Gain_.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50931.

6. Install a small-signal NPN silicon transistor such as a 2N5089
in the appropriate transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.

39

SECTION 3
Bipolar Transistor Tests

To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘AC _ Gain(). This can be done by typing the text
‘AC _Gain()’ after the active prompt in the Instrument
Console line of TSB.

9. In the program AC Gain.tsp’, the function AC Gain
(vcesource, ibl, ib2) iscreated.

* vcesource represents the voltage value on the
collector-emitter of the transistor

* 1ibl represents the first value for the base current
* 1ib2 represents the second value for the base current

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in
the function call. As an example, if you wanted to have the
collector-emitter voltage (V) be 2.5V, the base current initial
value at 100nA, and the base current second value at 200nA
youwould send AC _ Gain(2.5,100E-9, 200E-9) to the
instrument.

Keep the two values as close together as possible so that the
device remains in its linear operating region. A change in I, of
about 20% from one value to another would be a good starting
point.

10. The sources will be zeroed and then enabled. The program
will execute a two-point source and measure process.

11. Once the measurements have completed, the data (I, I,
Iy, Iy, and B) will be presented in the Instrument Console
window of TSB.

3.5.13 Typical Program 7 Results

The differential current gain obtained for a given sample of a
2N5089 NPN transistor would typically be about the same as the
DC current gain—about 500. Again, values could range from a low
of 300 to a high of 800 or so.

3.5.14 Program 7 Description

After both units are returned to default conditions, SMUB is set
up as follows:

¢ Source I
* IV compliance, 1.1V range

* Local sense

SMUA is configured as follows:

3-10

* Source V
* Local sense

* 100mA compliance

The collector-emitter voltage (V) will then be set. Then, the base
current will be set to the Iy, value and the collector current (1)
will be measured. Next, the base current will be set to the Iy,
value and I, will be measured. The AC current gain of the device
will then be calculated and printed to the Instrument Console
window of TSB.

3.5.15 Modifying Program 7

As with the DC current gain, AC current gain is often tested at
specific values of I.. Again, a search algorithm similar to the one
in Program 6A could be added to the program. Such an algorithm
would allow you to enter the desired collector current values, and
it would then perform an iterative search to determine automati-
cally the two correct base current values that would result in the
desired collector currents.

3.6 Transistor Leakage Current

Leakage currents, such as I, (collector-base, emitter open) and
Icro (collector-emitter, base open) can be tested using a single-
channel System SourceMeter instrument. The following para-
graphs discuss I, tests and also include an example program for
making such tests.

3.6.1 Test Configuration

Figure 3-7 shows the basic test configuration for performing Iz,
tests. The SMU sources the collector-emitter voltage (Vo) and
the instrument also measures Iz, Often, Vi, is swept across
the desired range of values, and the resulting .., values can be
plotted against Vg, as is the case with the example program
included in this section.

The base of the transistor should be left open. The same general
circuit configuration can be used to measure I; connect the
SMU between the collector and base, and leave the emitter open
instead.

Breakdown tests can also be performed using the same I, circuit
setup. In this case, the SMU is used to source I and measured
the breakdown voltage (V) in order to control device power at
breakdown better.

SECTION 3
Bipolar Transistor Tests

ICEO

Transistor
Under Test

Leave Base open

Test
Fixture

Series 2600
System
SourceMeter

Channel A
Vv Source V.,
Measure I,

Output LO

Figure 3-7. Configuration for I, tests

3.6.2 Example Program 8: I, Test

Use Program 8 to run I, tests on bipolar transistors. Follow
these steps to run the program:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 8),
manually enter the code from the appendix, or import the TSP
file ‘Iceo.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: http://www.
keithley.com/data?asset=50917.

6. Install a small-signal NPN silicon transistor such as a 2N3904
in the appropriate transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file’. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘Iceo (). This can be done by typing the text ‘Tceo ()’

after the active prompt in the Instrument Console line
of TSB.

9. In the program ‘Iceo.tsp’, the function Iceo(vstart,
vstop, vsteps) is created.

* vstart represents the initial voltage value in the V,; sweep
* vstop represents the final voltage value in the V. sweep
* vsteps represents the number of steps in the sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the start voltage
be 1V, the stop value be 11V, and the number of steps be 20,
you would send Iceo (1, 11, 20) to the instrument.

10. The sources will be zeroed and then enabled. The program
will execute a voltage sweep on the collector-emitter and
measure the collector-emitter current (I¢;) at each point.

11. Once the measurements have completed, the data (V¢ and I)
will be presented in the Instrument Console window of TSB.

3.6.3 Typical Program 8 Results

Figure 3-8 shows an example I, vs. V¢, plot generated by
Program 8. The device used for this example was a 2N3904 NPN
transistor.

3.6.4 Program 8 Description

The instrument is returned to default conditions. SMUA, which
sweeps Vero and measures I, is set up as follows:

¢ Source V
* Local sense
¢ 10mA compliance, autorange measure

* 1 NPLC Line cycle integration

3-11

SECTION 3
Bipolar Transistor Tests

ICEO vs.V

CEO

(2N3904)

3.50E-10

3.00E-10

2.50E-10

2.00E-10

1.50E-10

I (Amps)

1.00E-10

5.00E-11

0.00E+00 t ;

CEO

0 2 4

vCEO

Figure 3-8. Program 8 results: I, vs. Vo

e vstart: 0V
e vstop: 10V
¢ vsteps: 100

After setup, the output is zeroed and enabled. A linear voltage
sweep from the start to the stop value is performed. At each step,
the collector-emitter current (I.y) is measured.

Upon sweep completion, the output is disabled and the data is
written to the Instrument Console window of TSB.

3-12

6 8 10

(Volts)

3.6.5 Modifying Program 8

For different sweep values, simply modify the vstart, vstop,
and vstep values and source range parameter as appropriate.

In order to speed up the test procedure, you may wish to use
a faster integration period. Simply change the 1 _nplc value.
Note, however, that changing this parameter may result in unac-
ceptable reading noise.

Section 4
FET Tests

4.1 Introduction

FET tests discussed in this section include tests to generate
common-source characteristic curves, and transconductance
tests. Example programs for each of these applications are also
included.

4.2 Instrument Connections

Two SMU channels are required for the tests and a dual-channel
instrument from the Series 2600 System SourceMeter line is rec-
ommended. A test fixture with safety interlock is recommended
for connections to the FET under test.

For general-purpose measurements with most of the Series 2600
instruments, Model 2600-BAN cables are recommended. For low
current tests (<1mA) or when using a low current instrument like
the Model 2636, Model 7078-TRX-3 triax cables are recommended
to make instrument-to-test fixture connections.

WARNING

Lethal voltages may be exposed when the test fix-
ture lid is open. To avoid a possible shock hazard,
a safety interlock circuit must be connected before
use. Connect the fixture screw to safety earth
ground using #18 AWG minimum wire before use.
Turn off all power before connecting or discon-
necting wires or cables

NOTES
Remote sensing connections are recommended for
optimum accuracy. See paragraph 1.2.2 for details.

If measurement noise is a problem, or for critical, low
level applications, use shielded cable for all signal
connections.

4.3 Common-Source
Characteristics

One of the more common FET tests involving family of curves
is common-source characteristics. Such tests are very similar to
the common-emitter characteristic tests outlined earlier except,

of course, for the fact that an FET rather than a bipolar transistor
is involved.

Test data for common-source characteristics are obtained by
sweeping the gate-source voltage (V) across the desired range of
values at specific increments. At each Vi value, the drain-source
voltage (Vy) is swept through the required range, once again at
the desired increments. At each V value, the drain current (Ip)
is measured. Plots can then be made from this data to show I, vs.
Vps with one curve for each value of V.

4.3.1 Test Configuration

Figure 4-1 shows the test configuration for the common-source
tests. SMUB sweeps V;, while SMUA sweeps Vi, and the instru-
ment also measures I, For this programming example, a small-
signal, N-channel FET such as a SD210 is recommended.

4.3.2 Example Program 9:
Common-Source Characteristics

Program 9 outlines general programming techniques for meas-
uring common-source characteristics. Follow these steps to use
this program:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 9),
manually enter the code from the appendix, or import the TSP
file ‘FET _Comm_Source.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bitp:/jwwuw.
keithley.com/dataZasset=50921.

4-1

SECTION 4
FET Tests

FET

<= |

Under Test

N

\ Output HI
v Test ies 2
Output HI \é ED/ > [fFisue N System

. Vs~ SourceMeter
Seglest 2600 (Channel A
ystem
SourceMeter v iﬂweeps VDIS,
Channel B easures |,
Sweeps V¢ Output LO
Output LO

Vv

Figure 4-1. Test configuration for common-source tests

4-2

Install an N-channel FET such as an SD210 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion FET _ Comm _ Source ()’. This can be done by typing
the text FET _ Comm _ Source ()’ after the active prompt
in the Instrument Console line of TSB.

In the program ‘FET_Comm_Source.tsp’, the function FET _
Comm _ Source(vgsstart, vgsstop, vgssteps,
vdsstart, vdsstop, vdssteps) is created.

* vgsstart represents the initial voltage value in the
gate-source Vg sweep

* vgsstop represents the final voltage value in the gate-
source Vg sweep

* vgssteps represents the number of steps in the sweep

* vdsstart represents the initial voltage value in the
drain-source Vs sweep

¢ vdsstop represents the final voltage value in the drain-
source Vpg sweep

* vdssteps represents the number of steps in the sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in

the function call. As an example, if you wanted to have the
start voltages for Vs and Vs sweeps be 1V, the stop value
be 11V, and the number of steps be 20, you would send
FET Comm _Source(l, 11, 20, 1, 11, 20) to
the instrument.

10. The sources will be zeroed and then enabled. The program
will execute a sweep of Vg values between 0V and 10V using
2V steps. At each Vg step, Vs will be stepped between 0V
and 10V at 0.1V increments. At each increment, I;, will be
measured.

11. Once the measurements have been completed, the data (Vg,
Vps, and Ipg) will be presented in the Instrument Console
window of TSB.

4.3.3 Typical Program 9 Results

Figure 4-2 shows a typical plot generated by example Program 9.
A 2N4392 N-channel JFET was used to generate these curves.

4.3.4 Program 9 Description

The unit is returned to default conditions. Next, SMUB, which
sweeps Vs, is programmed as follows:

* SourceV

* 1mA compliance, ImA range

* Local sense

* vgsstart: OV

* vgsstop: 10V

* vgssteps:5

SMUA, which sweeps Vs and measures I, is configured as
follows:

SECTION 4
FET Tests

Common-Source Characteristics (SD210)

1.00E-01
8.00E-02
Vs =10V
@ 6.00E-02
£
E V=75V
S
_8 4.00E-02
V=5V
2.00E-02
o~ Vs =2.5V
0.00E+00 T T T T T T T T Vs =0V
0 1 2 3 4 6 7 8 9 10

V,, (Volts)

Figure 4-2. Program 9 results: Common-source characteristics

* Source V

¢ Local sensing

* 100mA compliance, autorange measure
* vdsstart: 0V

* vdsstop: 10V

* vdssteps: 100

* 1 NPLC Line cycle integration

Following setup of both units, the outputs are zeroed and
enabled. The first gate-source bias (V) source value is applied
and the drain-source voltage (Vps) sweep is started. At each point
in the Vpq sweep, the drain current (Ip,) is measured. When the
final Vs value is reached, the drain-source voltage is returned
to 0V, the gate-source voltage (V) is incremented, and the Vi
sweep begins again.

Upon reaching the final V¢ value, the outputs are zeroed, dis-
abled, and the data (Vig, Vp, and 1) is printed to the Instrument
Console Window of TSB, where it can be copied and pasted to a
spreadsheet for graphing.

4.3.5 Modifying Program 9

For other Vg values, simply modify the vgsstart, vgsstop,
and vgssteps variables as required.

Similarly, Vs can be swept over a different range by changing the
vdsstart, vdsstop, and vdsstep variables to the desired values.

4.4 Transconductance Tests

The forward transconductance (g;) of an FET is usually meas-
ured at a specific frequency (for example, 1kHz). Such a test can
be simulated with DC values by using as small an incremental
change in DC parameters as possible. For example, assume that
we source two gate-source voltages, Vi, and Vi, and measure
two resulting drain currents, I, and Ip,. The forward transcon-
ductance can then be approximated as follows:

8 = AID
AV
where: g, = forward transconductance (8)
Ap =Ip=Iy

AVgs = Vg2 = Vast

Two common plots involving g, include g vs. Vs and g vs. I,
The programming examples included in this section demonstrate
how to generate g, vs. Vs and g, vs. I, plots.

4.4.1 Test Configuration

Figure 4-3 shows the general test configuration for transconduc-
tance tests. SMUB sweeps Vg, while SMUA sources Vs and also
measures I;,. g, values are computed from incremental changes in
I, and V. Note that an N-channel FET such as a SD210 is recom-
mended for use with the example programs that follow.

4-3

SECTION 4
FET Tests

REN e
Under Test B
\ \ Output HI
v Taak Series 2600
Output HI \{ >/ S Fixture System
. Vs~ SourceMeter
Seglest 2600 (Channel A
ystem
SourceMeter \" i/(l)urces VDls,
Channel B easures |
Sweeps V¢ Output LO
Output LO

Figure 4-3. Configuration for transductance tests

4.4.2 Example Program 10:

Transconductance vs.
Gate Voltage Test

Use Program 10 to generate a typical g vs. Vi plot as well as a
g vs. Ip.

1.

With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

Connect the test fixture to both units using appropriate
cables.

Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 10),
manually enter the code from the appendix, or import the TSP
file ‘Transconductance.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/datazasset=50910.

Install an N-channel FET such as an SD210 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB, and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “I'SP Program-

4-4

ming Fundamentals” section of the Series 2600 Reference
Manual.

8. Once the code has been placed in the instrument run-time

memory, we can run it at any time simply by calling the func-
tion ‘Transconductance ()’ This can be done by typing
the text ‘Transconductance ()’ after the active prompt in
the Instrument Console line of TSB.

9. In the program ‘Transconductance.tsp’, the function

Transconductance (vgsstart, vgsstop,
vgssteps, vdsbias) is created.

* vgsstart represents the initial voltage value in the
gate-source Vg sweep

* vgsstop represents the final voltage value in the gate-
source Vg sweep

* vgssteps represents the number of steps in the sweep

* vdsbias represents the voltage value applied to the
drain-source terminal of the FET

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the start volt-
ages for Vg sweeps be 1V, the stop value be 11V, the number
of steps be 20, and the V4 value as 5V, you would send
Transconductance(l, 11, 20, 5) to the instrument.

10. The sources will be zeroed and then enabled. The instrument

will apply Vps and execute a sweep of Vi values between
0V and 5V using 100 steps. At each increment, I;, will be
measured.

SECTION 4
FET Tests

11. Once the measurements have completed, the data (Vis, Vys, I,
and g;) will be presented in the Instrument Console window
of TSB.

4.4.3 Typical Program 10 Results

Figure 4-4 shows a typical g vs. V4 plot as generated by the
example program. Again, an SD210 N-channel FET was used for
the example plot.

Figure 4-5 shows a typical g vs. I, plot generated by the example
program.

4.4.4 Program 10 Description

The instrument is returned to default conditions. SMUB, which
sweeps Vg, is programmed as follows:

e Source V

* 1mA compliance, autorange

* Local sense

* vgsstart: OV

* vgsstop: 5V

* vgssteps: 100

g, vs.V (SD210)

1.00E-02

8.00E-03

6.00E-03

g,. (Siemens)

4.00E-03

2.00E-03

0.00E-00 T T

0 1 2

V_ (Volts)

Figure 4-4. Program 10 results: Transconductance vs. Vg

g, vs. I, (SD210)

1.00E-02

8.00E-03

6.00E-03

4.00E-03

g, (Siemens)

2.00E-03

0.00E-00 T T

0.000 0.005 0.010

FV, =10V
T T
3 4 5
V, =10V
T T
0.020 0.025 0.030

1, (Amps)

Figure 4-5. Program 10 results: Transconductance vs. I,

4-5

SECTION 4
FET Tests

SMUA, which sources V;,s and measures I, is then configured in
the following manner:

¢ Source V

* Local sense

* 100mA compliance, autorange measure
* 1 NPLC Line cycle integration

* vdsbias:10V

Following setup of both units, the outputs are zeroed and
enabled. SMUA applies the V¢ bias, and SMUB begins the Vg
voltage sweep. At each step in the V5 sweep, SMUA measured
the drain current (I,). The process repeats until all points in the
sweep have been taken.

Next, we encounter the part of the program where the transcon-
ductance values are calculated. Each transconductance value is
computed from Al and AV. Finally, the data (Vi I, and g;,) is
printed to the Instrument Console of TSB. You can then copy and
paste the data to a spreadsheet to graph g vs. Vg and g vs. I,

4.5 Threshold Tests

The threshold voltage (V) is a critical parameter for FET charac-
terization, as well as process control. Basically, there are a number
of methods for determining V,, including several transconduc-
tance methods, the two-point extrapolated V; method, as well as
the V; @ I, search method. In this paragraph, we will discuss the
I, search method for finding V;, along with a self-biasing method
that takes advantage of the special capabilities of the Series 2600
System SourceMeter instruments.

FET

4.5.1 Search Method Test Configuration

Figure 4-6 shows the general test configuration for the search
method threshold voltage tests. SMUB sources Vs, while SMUA
sources Vs and also measures I, An iterative search process is
included in the program to allow you to enter a target I, value.

4.5.2 Example Program 11A: Threshold
Voltage Tests Using Search Method

Use Program 11A to perform the V;; test using the search for target
I, method.

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 11A),
manually enter the code from the appendix, or import the TSP
file ‘FET Thres_Search.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50919.

6. Install an N-hannel FET such as an SD210 in the appropriate
transistor socket of the test fixture.

< |

Under Test

N

Output HI \{ >

Series 2600 Vos~

System |
SourceMeter

Channel B
SetsV_ for |V
Target |,

Output LO

N—

Output HI

Series 2600
System
SourceMeter

Channel A
Vv Sources V,
Measures |

Test

S Fixture

Output LO

Vv

Figure 4-6. Configuration for search method threshold tests

4-6

SECTION 4
FET Tests

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘FET _Thres Search()’. This can be done by
typing the text FET _ Thres _ Search()’ after the active
prompt in the Instrument Console line of TSB.

9. In the program ‘FET Thres Search.tsp’, the function FET _
Thres Search(vdssource, lowvgs, highvgs,
targetid) is created.

* vdssource represents the voltage value on the drain-
source of the transistor

* lowvgs represents the gate-source voltage low limit for
the search algorithm

* highvgs represents the gate-source voltage high limit
for the search algorithm

* targetid represents the target drain current for the
search algorithm

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in the
function call. As an example, if you wanted to have the drain-
source voltage (Vys) be 2.5V, the gate-source voltage low value
at 0.7V, the gate-source voltage high value at 1.5V, and the
target drain current at 2uA, you would send FET _ Thres
Search(2.5, 0.7, 1.5, 2E-6) to the instrument.

10. The sources will be enabled, and the collector current of
the device will be measured. The program will perform an
iterative search to determine the closest match to the target
I, (within =5%). If the search is unsuccessful, the program
will print “Iteration Level Reached”. This is an error indicating
that the search reached its limit. Recheck the connections,
DUT, and variable values to make sure they are appropriate
for the device.

11. Once the sweep has been completed, the data (I, Vi, and
Vys) will be presented in the Instrument Console window
of TSB.

4.5.3 Program 11A Description

Initially, the instrument is returned to default conditions. SMUB,
which sources Vg, is programmed as follows:

* SourceV

* 1mA compliance, autorange

* Local sense

SMUA, which sources V;,s and measures I, is then configured in
the following manner:

¢ Source V
* Local sense
¢ 100mA compliance, autorange measure

* 1 NPLC Line cycle integration

Once the SMU channels have been configured, the sources values
are programmed to 0 and the outputs are enabled. The drain-
source voltage (V) is sourced, compliance is checked with the
function Check _Comp (), and the program enters into the
binary search algorithm for the target drain current (I,)) by varying
the gate-source voltage (V) value, measuring the I, comparing it
to the target I;), and adjusting the V; value, if necessary. The itera-
tion counter is incremented each cycle through the algorithm. If
the number of iterations has been exceeded, a message to that
effect is displayed, and the program halts.

Assuming that the number of iterations has not been exceeded, the
data is displayed in the Instrument Console window of the TSB.

4.5.4 Modifying Program 11A

As written, the program sets the number of iterations to search for
target I, to 20. You can change this by adjustingthe 1~k max
variable to perform the iterative search as many times as is neces-
sary. Similarly, the allowed range for the I, target search is =5%.
Again, you can make this tolerance range as tight as necessary
by modifying the limits in line 155. Note that reducing the target
range will probably require an increase in the number of itera-
tions as well.

4.5.5 Self-bias Threshold Test
Configuration

Figure 4-7 shows the general test configuration for the self-
bias method of threshold voltage tests. SMUB sources the drain
current (assumed to be the same as the source current), and it
also measures the threshold voltage, V;. SMUA sources V. This
arrangement allows very rapid threshold voltage measurement
(milliseconds per reading) at very low currents, and it can be used
with both enhancement-mode and depletion-mode FETs. Note
that the high impedance sensing circuits and the floating capabili-
ties of the Series 2600 System SourceMeter instruments are key
characteristics that allow this special configuration to be used.

SECTION 4
FET Tests

WARNING

When a System SourceMeter instrument is pro-
grammed for remote sensing, hazardous voltage
may be present on the SENSE and OUTPUT termi-
nals when the unit is in operate regardless of the
programmed voltage or current. To avoid a pos-
sible shock hazard, always turn off power before
connecting or disconnecting cables to the Source-
Measure Unit or the associated test fixture.

NOTE
Entered values for both Vs and I, are adjusted to the
reverse polarity because of the connection configura-
tion used. For example, for an N-channel FET, both V/y
and ;) must be negative.

As an example, entering a Vs of 5V will result in -5V
actually being applied at the output.

These values will result in proper biasing of the
DUT. Also, the sign of the measured V; value will be
reversed.

4.5.6 Example Program 11B: Self-bias
Threshold Voltage Tests

Use Program 11B to perform the self-bias threshold voltage t

est.

1. With the power off, connect a dual-channel System Source-

Meter instrument to the computer’s IEEE-488 interface.

EEll
Under Test

. Connect the test fixture to both units using appropriate cables.

Note that OUTPUT HI of SMUA is connected to the OUTPUT
LO of SMUB, while SENSE HI of SMUA is connected to the
OUTPUT HI of SMUB.

. Turn on the instrument and allow the unit to warm up for two

hours for rated accuracy.

. Turn on the computer and start Test Script Builder (TSB). Once

the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

. You can simply copy and paste the code from Appendix A in

this guide into the TSB script editing window (Program 11B),
manually enter the code from the appendix, or import the TSP
file FET Thres Fast.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading from bttp:/jwwuw.
keithley.com/data‘asset=50920.

. Install an NPN FET such as a SD210 in the appropriate tran-

sistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest

method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

G

)

Test
Fixture

Output HI

Series 2600
System
SourceMeter

Channel B
Sources I, (=1,) v
Measures V.

Output LO

Sense HI

Sense LO Output LO

Series 2600
System
|:V:| SourceMeter
Channel A
Sources V

Output HI

Vv

Figure 4-7. Configuration for self-bias threshold tests

4-8

SECTION 4
FET Tests

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘FET Thres Fast()’ This can be done by typing the text
‘FET _Thres Fast()’ after the active prompt in the
Instrument Console line of TSB.

9. Inthe program ‘FET Thres Fast().tsp’, the function FET _
Thres Fast(vdssource, istart, istop,
isteps) is created.

* vdssource represents the voltage value on the drain-
source of the transistor

* istart represents the start value for the drain current
sweep

* 1istop represents the stop value for the drain current
sweep

* isteps represents the number of steps in the current
sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the drain-source
voltage (Vy) be 0.25V, the drain current sweep start value at
0.20uA, the drain current sweep stop value at 2uA, and the
number of steps be 15, you would send FET _ Thres _
Fast(0.25, 200E-9, 2E-6, 15) to the instrument.

10. The sources will be enabled, and the collector current of the
device will be measured.

11. Once the sweep has been completed, the data (Vyy, Vy, and I)
will be presented in the Instrument Console window of TSB.
Note that the program reverses the polarity of the emitter cur-
rents in order to display true polarity.

4.5.7 Program 11B Description

Initially, the instrument is returned to default conditions. Next,
SMUB, which sources I;, and measures V;, is programmed as
follows:

¢ Source I

* 11V compliance, autorange
* Local sense

¢ 1 NPLC integration rate

* istart:05uA

* istop: 1uA

* isteps: 10

Next, SMUA, which sources Vy, is configured in the following
manner:

¢ Source V

* Remote sensing

* 100mA compliance, autorange

* vdssource: 0.5V

Once the SMU channels have been configured, the sources values
are programmed to 0 and the outputs are enabled. The drain-
source voltage (Vps) is sourced and the drain current (Ip) is

swept. At each point in the sweep, the threshold voltage (V) is
measured.

The data is displayed in the Instrument Console window of the
TSB.

Note that both I, and V; values are corrected for proper polarity.

4.5.8 Modifying Program 11B

As written, the program tests for threshold voltages at 10 values
of I, between 0.5uA and 1uA in 10 increments. These values can
be changed to the required values simply by modifying the cor-
responding variables in the program.

4-9

SECTION 4
FET Tests

4-10

Section 5
Using Substrate Bias

5.1 Introduction

To this point in this guide, we have focused on performing tests on
devices that do not require substrate bias. Because many devices,
especially those in complex packages, do require some form of
substrate bias, our discussion would not be complete without dis-
cussing methods for applying and programming substrate bias.

In the following paragraphs, we will discuss applying substrate bias
by adding another Series 2600 System SourceMeter instrument.

5.2 Substrate Bias Instrument
Connections

WARNING
Interlock circuits must be connected before use.
Connect the fixture ground to safety earth ground
using #18 AWG minimum wire before use. Turn off
all power before connecting or disconnecting wires
or cables.

5.2.1 Source-Measure Unit Substrate
Bias Connections and Setup

Figure 5-1 shows test connections when using two Series 2600
System SourceMeter instruments because the tests outlined in the
following sections require three SMUs. Two SMUs supply the same
functions as outlined earlier in this guide, and a third SMU is used
to apply substrate bias. In the past, this would have required con-
necting and coordinating three separate instruments, each with
only one SMU.

To simplify hardware integration, the Keithley Series 2600 System
SourceMeter instruments are equipped with a few features that
make the task of multi-channel testing much easier. For example,
we can use a dual-channel instrument such as the Keithley Model
2602, 2612, or 2636 and a single-channel Instrument such as the
Model 2601, 2611, or 2635. Therefore, we need only two instru-
ments to perform the test. All of the following programs will also
work using two dual-channel instruments with no modification.

For instrument-to-instrument communication, Keithley’s Series
2600 System SourceMeter instruments employ an expansion

interfaceknownas TSP-Link™ interface. TSP-Linkallows expanding
test systems to include up to 16 TSP-Link enabled instruments.

In a TSP-Link-enabled system, one of the nodes (instruments) is
the master, which is generally denoted as Node 1, while the other
nodes in the system are slaves. One GPIB connection is required
to link the controlling PC and the master instrument. All other
master/slave connections require a simple TSP-Link connection
using a crossover Ethernet cable. Additional instruments can
be connected as slaves by simply connecting each slave to one
another serially using additional crossover Ethernet cables and
configuring each instrument for use as a TSP-Link node.

More information on TSP-Link features can be found in the Series
2600 System SourceMeter Reference Manual.

CPU with
GPIB

GPIB Cable

Series 2600
System
SourceMeter

Node 1: Master

Series 2600
System
SourceMeter

Node 2: Slave

Figure 5-1. TSP-Link connections for two instruments

5-1

SECTION 5
Using Substrate Bias

A test fixture with appropriate shielding and safety interlock
mechanisms is recommended for test connections, along with
Model 7078-TRX-3 triax cables for low current measurements.
Note that the connecting cables to the second instrument, assume
that local sensing will be used even though that may not be the
situation in many cases.

5.2.2 Voltage Source Substrate Bias
Connections

Figure 5-2 shows bias connections using a single-channel Model
2635 Low Current System SourceMeter instrument for substrate
bias connections. Two additional SMU channels are added using
a dual-channel Model 2602 System SourceMeter instrument. Note
that remote sensing is not used in this application; remote sensing
could be added by connecting the sense terminals of the Model
2635 to the sense connections on the test fixture and adding addi-
tional remote sense commands to the program.

NOTES

Remote sensing connections are recommended for
optimum accuracy. See paragraph 1.2.2 for details.

CPU with
GPIB

Model 2602
Dual-Channel
System
SourceMeter

Node 1: Master

Model 2635
Low Current
System
SourceMeter

Node 2: Slave

Figure 5-2. TSP-Link instrument connections

5-2

If measurement noise is a problem or for critical, low
level applications, use shielded cable for all signal
connections.

5.3 Source-Measure Unit
Substrate Biasing

The following paragraphs discuss using three SMU channels to
provide substrate biasing: a dual-channel instrument, such as a
Model 2602 or 2636, and a single-channel instrument, such as
a 2601 or 2635. All of the example programs will work with two
dual-channel instruments with no modification.

In the first example, the substrate current () is measured as the
gate-source voltage (V) is swept across the desired range. The
program generates a plot of I, vs. V. In the second example, the
third SMU channel provides substrate bias for common-source
characteristic tests.

5.3.1 Program 12 Test Configuration

Figure 5-3 shows the test configuration for Program 12. SMUB of
Node 1 is used to sweep Vs, while SMUA of Node 1 sources V.
SMUA of Node 2 applies a user-defined substrate bias (V) to the
device under test: it also measures the substrate current ().

5.3.2 Example Program 12: Substrate
Current vs. Gate-Source Voltage

Program 12 demonstrates methods to generate an Ig; vs. Vi plot.
Follow these steps to use this program.

1. With the power off, connect the dual-channel Instrument to
the computer’s IEEE-488 interface. Connect the single-channel
Instrument to the dual-channel master using a crossover Eth-
ernet cable.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instruments and allow the units to warm up for
two hours for rated accuracy.

4. Configure the TSP-Link communications for each instrument.

Slave: A single-channel instrument such as the Model 2601,
2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the
Series 2600 instruments used have firmware Revision 1.4.0
or later installed.)

SECTION 5
Using Substrate Bias

FET .
Under Test 2
\ Test
o Fixture
| 'Ei\
v
Vos~ Vos
Output HI Output HI Output HI
Series 2600 Series 2600 Series 2600
System | System System
SourceMeter SourceMeter SourceMeter
Channel B Channel A Channel A
Node 1 v Node 2 Node 1
Sweeps V¢ Sources V, Sources V
Measures |, Measures |
Output LO
Output LO Output LO
Figure 5-3. Program 12 test configuration
3. Select the TSPLINK CFG menu. (If the Series 2600 instru- 6. You can simply copy and paste the code from Appendix A in

ments used have firmware Revision 1.4.0 or later installed,
the menu name should be TSPLINK.)

4. Select the NODE menu.
5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602,
2612, or 26306.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if
the Series 2600 instruments used have firmware Revision
1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the master and press
ENTER.

6. Select the TSPLINK_CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

. Turn on the computer and start Test Script Builder (TSB).
Once the program has started, open a session by connecting
to the master instrument. For details on how to use TSB, see
the Series 2600 Reference Manual.

10.

this guide into the TSB script editing window (Program 12),
manually enter the code from the appendix, or import the TSP
file ‘FET Isb_Vgs.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on the following link to begin downloading: http://
wwuw.keithley.com/data?asset=50964.

Install an NPN FET such as a SD210 in the appropriate tran-
sistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “ISP Program-
ming Fundamentals” section of the Series 2600 Reference
Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘FET Isb Vgs(). This can be done by typing the text
‘FET _Isb _Vgs()’ after the active prompt in the Instru-
ment Console line of TSB.

In the program ‘FET Isb Vgs().tsp', the function FET _ Isb
Vgs (vdssource, vsbsource,vgsstart,vgsstop,
vgssteps) is created.

* vdssource represents the voltage value on the drain-
source of the transistor

* vsbsource represents the voltage value on the
substrate-source of the transistor

5-3

SECTION 5
Using Substrate Bias

* vgsstart represents the start value for the gate-source
voltage sweep

* vgsstop represents the stop value for the gate-source
voltage sweep

* vgssteps represents the number of steps in the sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in range in the
function call. As an example, if you wanted the drain-source
voltage (Vps) to be 2V, substrate-source (V) to be —2V, the
gate-source (V;s) voltage sweep start value at 1V, the gate-
source sweep stop value at 12V, and the number of steps to
be 15, you would send FET _Isb Vgs(2, -2, 1, 12,
15) to the instrument.

11. The sources will be enabled, and the gate-source voltage
sweep will be executed.

12. Once the sweep has been completed, the data (I, Vi, and L)
will be presented in the Instrument Console window of TSB.

5.3.3 Typical Program 12 Results

Figure 5-4 shows a typical plot generated by example Program 12
using an SD210 MOSFET.

5.3.4 Program 12 Description

After the SMUs are returned to default conditions, Node 1 SMUB,
which sweeps Vg, is configured as follows:

* SourceV

* 1uA compliance, autorange

* Local sense

* vgsstart: OV
* vgsstop: 10V
* vgssteps: 10

Next, Node 1 SMUA, which sources Vy, is set up to operate in the
following manner:

¢ Source V

¢ Local sensing

¢ 100mA compliance, autorange
* vdssource: 1V

Finally, Node 2 SMUA, which sources Vg, and measures I, is pro-
grammed as follows:

¢ Source V

* Local sensing

* 1 compliance, autorange measure

¢ 1 NPLC Line cycle integration

After both instruments are set up, the outputs are zeroed and
enabled. The bias values Vg and Vg are applied, then the Vg

sweep begins. At each point in the sweep, the drain current (I)
and substrate leakage (I;) are measured.

After the sweep is complete, the data (I, Vi, and L) is printed to
the Instrument Console of TSB.

Iy, vs. Vo

0.00E+00

—5.00E-13 1

—1.00E-12

—1.50E-12 4

I, (Amps)

—2.00E-12

—2.50E-12

—-3.00E-12

~3.50E-12 ; ;

\ Series |

0 2 4

Figure 5-4. Program 12 typical results: Ig; vs. Vg

5-4

6 8 10 12
V, (Volts)

SECTION 5
Using Substrate Bias

5.3.5 Modifying Program 12

For different sweeps, the variables for Vi start, V4 stop, and
Vg5 step values can be changed as required. For different sweep
lengths, array size and loop counter values must be adjusted
accordingly. You can also change the Vg value, if desired, by
modifying that parameter accordingly.

5.3.6 Program 13 Test Configuration

Figure 5-5 shows the test configuration for Program 13. Unit #1
is used to sweep Vg; Unit #2 sweeps V;,s and measures I;,. Unit
#3 applies a user-defined substrate bias to the device under test.
Common source characteristics are generated by data taken when
the program is run.

5.3.7 Example Program 13:
Common-Source Characteristics
with Source-Measure Unit
Substrate Bias

Program 13 demonstrates common-source characteristic test
programming with substrate bias. Follow these steps to use this
program.

1. With the power off, connect the dual-channel SourceMeter
instrument to the IEEE-488 interface of the computer. Con-
nect the single-channel SourceMeter instrument to the dual-
channel master using a crossover Ethernet cable.

2. Connect the test fixture to both units using appropriate

3. Turn on the instruments and allow the units to warm up for
two hours for rated accuracy.

4. Configure the TSP-Link communications for each instrument.

Slave: A single-channel instrument such as the Model 2601,
2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the
Series 2600 instruments used have firmware Revision 1.4.0
or later installed.)

3. Select the TSPLINK _CFG menu. (If the Series 2600 instru-
ments used have firmware Revision 1.4.0 or later installed,
the menu name should be TSPLINK.)

4. Select the NODE menu.
5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602,
2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if
the Series 2600 instruments used have firmware Revision
1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

4. Select the NODE menu.
5. Set the NODE number to 1 for the master and press

cables. ENTER.
EE} e]
Under Test 2
Test
Fixture
(] 'E\\
i
Vos ~> VDS
Output HI Output HI Output HI
Series 2600 Series 2600 Series 2600
System | I System System
SourceMeter SourceMeter SourceMeter
Channel B Channel A Channel A
Node 1 Y v Node 2 Node 1
Sweeps V, Sources Sweeps V,
P> os Substrate Bias Measures [;Z
Output LO
Output LO Output LO

Vv

Figure 5-5. Program 13 test configuration

SECTION 5

Using Substrate Bias

6. Select the TSPLINK CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

5. Turn on the computer and start Test Script Builder (TSB).
Once the program has started, open a session by connecting
to the master instrument. For details on how to use TSB, see
the Series 2600 Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 13),
manually enter the code from the appendix, or import the
TSP file ‘FET Comm_Source Vsb.tsp’ after downloading it to
your PC.

If your computer is currently connected to the Internet, click
on the following link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50921.

. Install an NPN FET such as an SD210 in the appropriate tran-
sistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “I'SP Program-
ming Fundamentals” section of the Series 2600 Reference
Manual.

. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the

function ‘FET Comm_Source Vsb(). This can be done by
typing the text ‘FET _ Comm _ Source _ Vsb()’ after the
active prompt in the Instrument Console line of TSB.

. In the program ‘FET Comm_Source Vsb().tsp’, the function

FET Comm _Source _Vsb(vgsstart, vgsstop,
vgssteps, vdsstart, vdsstop, vdssteps,
vsbsource) is created.

* vgsstart represents the start value for the gate-source
voltage sweep

* vgsstop represents the stop value for the gate-source
voltage sweep

* vgssteps represents the number of steps in the sweep

* vdsstart represents the start value for the drain-source
voltage sweep

¢ vdsstop represents the stop value for the drain-source
voltage sweep

* vdssteps represents the number of steps in the sweep
¢ vsbsource represents the substrate bias voltage

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in the
function call. As an example, if you wanted to have the gate-
source (Vgs) voltage sweep start value at 1V, the gate-source
sweep stop value at 12V and the number of steps to be 10,
the drain-source (Vps) voltage sweep start value at 1V, the
drain-source sweep stop value at 12V and the number of steps
to be 80, and the substrate bias to be -2V, you would send

Common-Source Characteristics
with Substrate Bias (SD210)

1.00E-01

8.00E-02

6.00E-02

1,s (Amps)

4.00E-02

2.00E-02

0.00E+00 ~fi—r

0 1 2 3] 4

V,, (Volts)

V =10V
V=75V
Vg =5V
Vi, = 2050
————t V=0V
6 7/ 8 9 10 5

Figure 5-6. Program 13 typical results: Common-source characteristics with substrate bias

5-6

SECTION 5
Using Substrate Bias

FET Comm _Source Vsb(1, 12, 10, 1, 12,
80, -2) to the instrument.

10. The sources will be enabled, and the substrate bias is applied,
the gate-source voltage value is applied, and the drain-source
sweep is executed. The gate-source voltage value is then incre-
mented and the drain-source sweep is re-run.

11. Once the gate-source sweep has been completed, the data
(Vss, Ves, Vs, and L) will be presented in the Instrument
Console window of TSB.

5.3.8 Typical Program 13 Results

Figure 5-6 shows a typical plot generated by Example
Program 13.

5.3.9 Program 13 Description

Both instruments are returned to default conditions. Node 1
SMUB, which sweeps Vg, is configured as follows:

* Source V

* 1mA compliance, autorange

* Local sense

* vgsstart: 0V

* vgsstop: 10V

* vgssteps: 5

Next, Node 1 SMUA, which sweeps Vs and measures I;,, is set up
to operate in the following manner:

* Source V

* Local sensing

* 100mA compliance, autorange measure

* 1 NPLC Line cycle integration

* vdsstart: 0V

* vdsstop: 10V

¢ vdssteps: 100

Finally, Node 2 SMUA, which provides substrate bias, is pro-
grammed as follows:

* SourceV

* Local sensing

* 10mA compliance, autorange measure

Both instruments are returned to default conditions; the sources
are zeroed and enabled. The substrate bias (V) and gate-source
(Vgs) are applied and the program enters the main program loop
to perform five I;, vs. Vs sweeps, one for each of five V4 values.
Node 1 SMUA then cycles through its sweep list, setting V;,4 to the

required values, and measuring I, at each step along the way. The
program then loops back for the next sweep until all five sweeps
have been performed.

Next, all three SMU outputs are zeroed and disabled. Finally, the
data is written to the Instrument Console of the TSB.

5.3.10 Modifying Program 13

For different sweeps, the Vg start, Vi stop, Vi steps, Vpg start,
Vps stop, and Vg steps values can be changed as required. For
different sweep lengths, array size and loop counter values must
be adjusted accordingly.

5.4 BIJT Substrate Biasing

The following paragraphs discuss using one dual-channel and
one single-channel Series 2600 System SourceMeter instrument
to perform tests on a four-terminal device, such as a BJT, with
substrate bias. The example shown in this section is a modified
version of the common-emitter BJT test presented previously in
the guide.

5.4.1 Program 14 Test Configuration

Figure 5-7 shows the test configuration for Program 14. Node 1
SMUB is used to sweep I, while Node 1 SMUA sweeps V; and
measures I.. Node 2 SMUA applies the substrate bias (V) to the
device under test.

5.4.2 Example Program 14: Common-
Emitter Characteristics with a
Substrate Bias

Program 14 demonstrates common-emitter characteristic test pro-
gramming with substrate bias. Proceed as follows:

1. With the power off, connect the dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface. Con-
nect the single-channel System SourceMeter instrument to the
dual-channel master using a crossover Ethernet cable.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instruments and allow the units to warm up for
two hours for rated accuracy.

4. Configure the TSP-Link communications for each instrument.

Slave: A single-channel instrument such as the Model 2601,
2611, or 2635.

1. Press the MENU key to access MAIN MENU.

5-7

SECTION 5
Using Substrate Bias

Transistor e
Under Test L
\ Test
/I;\\ Fixture
NS
Output HI < Output HI Output HI
Series 2600 Series 2600 Series 2600
System System I System
SourceMeter SourceMeter SourceMeter
Channel B v Channel A Channel A
Node 2 Node 1 v Node 1
Sources Sweeps V
Sweeps I, Substrate Bias MeasuresCIEc
Output LO
8 Output LO Output LO

Vv

Figure 5-7. Program 14 test configuration

5-8

Select the COMMUNICATION menu. (Skip this step if the
Series 2600 instruments used have firmware Revision 1.4.0
or later installed.)

Select the TSPLINK_CFG menu. (If the Series 2600 instru-
ments used have firmware Revision 1.4.0 or later installed,
the menu name should be TSPLINK.)

Select the NODE menu.
Set the NODE number to 2 and press ENTER.

4.
5.

Master: A dual-channel instrument such as the Model 2602,
2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if
the Series 2600 instruments used have firmware Revision
1.4.0 or later installed.)

Select the TSPLINK_CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

Select the NODE menu.

Set the NODE number to 1 for the master and press
ENTER.

Select the TSPLINK CFG menu. (If the Series 2600 instru-
ments used have firmware Revision 1.4.0 or later installed,

the menu name should be TSPLINK.)
7. Select the RESET to initialize the TSP-Link.

Turn on the computer and start Test Script Builder (TSB).
Once the program has started, open a session by connecting

to the master instrument. For details on how to use TSB, see
the Series 2600 Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 14),
manually enter the code from the appendix, or import the
TSP file ‘BJT_Comm_Emit_Vsh.tsp’ after downloading it to
your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: htip:/www.
keithley.com/data?asset=50928.

Install a BJT with substrate connections in appropriate tran-
sistor socket of the test fixture. The test is optimized for BJTs
with source requirements similar to a 2N3904.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file’. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘BJT Comm_Emit Vsb(). This can be done by typing
the text FET _ Comm _ Source _ Vsb()’ after the active
prompt in the Instrument Console line of TSB.

In the program ‘BJT_Comm_Emit _Vsb().tsp’, the
function BOT _ Comm _Emit Vsb(istart,

SECTION 5
Using Substrate Bias

10.

istop, isteps, vstart, vstop, vsteps,
vsbsource) is created.

istart represents the start value for the base current
sweep

istop represents the stop value for the base current
sweep

isteps represents the number of steps in the sweep

vstart represents the start value for the collector-
emitter voltage sweep

vstop represents the stop value for the collector-emitter
voltage sweep

vsteps represents the number of steps in the sweep

vsbsource represents the substrate bias voltage

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in the
function call. As an example, if you wanted to have the base
current (I) current sweep start value at 20uA, the base cur-
rent sweep stop value at 200uA and the number of steps to
be 10, the collector-emitter (Vi) voltage sweep start value
at 1V, the collector-emitter sweep stop value at 12V and the
number of steps to be 80, and the substrate bias to be -2V, you
would send BJT _ Comm _ Em t _Vsb(20E-6,
200E-6, 10, 1, 12, 80, -2) to the instrument.

The sources will be enabled, and the substrate bias is applied,

the base current value is applied, and the collector-emitter

voltage sweep is executed. The base current value is then
incremented and the collector-emitter sweep is re-run.

11. Once the gate-source sweep has been completed, the data (I,
Vs, Vi, and 1) will be presented in the Instrument Console
window of TSB.

5.4.3 Typical Program 14 Results

Figure 5-8 shows a typical plot generated by example Program 14.

5.4.4 Program 14 Description

After both instruments are returned to default conditions, Node 1
SMUB, which sweeps IB, is configured as follows:

e Source |

* [V compliance, 1.1V range

* Local sense

e istart: 10uA

e istop:50uA

* isteps:5

Next, Node 1 SMUA, which sweeps V. and measures I, is set up
to operate in the following manner:

* SourceV

* Local sensing

* 100mA compliance, autorange measure

* 1 NPLC Line cycle integration

Common-Emitter Characteristics
with Substrate Bias

5.00E-02
4.00E-02
@ 3.00E-02 —
@ I, =50uA
E I =40pA
= 2.00E-02
I, =30uA
I, =20pA
1.00E-02
I, = 10pA
0.00E+00 T T T T T T T T
0 1 2 g 4 6 7 8 9 10

V. (Volts)

Figure 5-8. Program 14 typical results: Common-emitter characteristics with substrate bias

SECTION 5
Using Substrate Bias

* vstart: 0V

e vstop: 10V

* vsteps: 100

Finally, Node 2 SMUA, which provides substrate bias, is
programmed:

* Source V
* Local sensing
* 100mA compliance, autorange measure

* vsbsource: 1V

After the instruments have been set up, the outputs are zeroed and
enabled. The substrate bias (Vg;) and first base current (1) values

5-10

are applied. Then, the collector-emitter voltage sweep begins. At
each point in the sweep, the collector current is measured. The
program enters the main program loop to perform five I vs. Ve,
sweeps, one for each of five I, values.

Upon completion of the base current sweep, all outputs are
zeroed and disabled. The data is written to the Instrument Con-
sole of TSB.

5.4.5 Modifying Program 14

For different sweeps, the base current start, stop, step, and
the collector-emitter voltage start, stop, and step values can be
changed as required. For different sweep lengths, loop counter
values must be adjusted accordingly.

Section 6
High Power Tests

6.1 Introduction

Many devices, such as LED arrays and power FETs, require large
current or voltage values for operation or characterization, which
can create issues when testing. While System SourceMeter instru-
ments are extremely flexible, they do have power limitations. For
example, a single SMU channel of a Model 2602 can deliver up to
40W of power. That translates to sourcing 1A at 40V or 40V at 1A.
What do we do if our device requires 2A at 40V?

Luckily, the answer is straightforward if we take certain precau-
tions.

The following examples illustrate how to configure a dual-channel
instrument, such as a Model 2602, 2612, or 2636, to deliver higher
current or voltage values.

6.1.1 Program 15 Test Configuration

Figure 6-1 shows the test configuration for Program 15. SMUA
and SMUB outputs are wired in parallel: SMUA Output HI to
SMUB Output HI and SMUA Output LO to SMUB output LO. This
effectively doubles the maximum current output and can deliver
a total of 2A at 40V.

Output Output Output Output
HI LO LO HI

Series 2600
System SourceMeter

DUT

Figure 6-1. High current (SMUs in parallel)

In this example, local sense is being used to measure voltage, but
you can use remote sensing from one of the SMU channels if high
accuracy voltage measurements are required. See paragraph 1.2.2
for more information on remote sensing.

6.1.2 Example Program 15: High Current
Source and Voltage Measure

Program 15 demonstrates how to deliver higher current sourcing
values using a dual-channel System SourceMeter instrument.
Follow these steps to use this program.

1. With the power off, connect the dual-channel Instrument to
the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 15),
manually enter the code from the appendix, or import the TSP
file ‘KI2602Example_High Current.tsp’ after downloading it
to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50905.

6. Install a device (Power FET, LED array, etc.) in the appropriate
transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file’. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the

6-1

SECTION 6
High Power Tests

function ‘RunHighCurrent (sourcei,points), where
sourcei is the desired current value and points is the
number of voltage measurements.

9. Inthe program ‘KI2602Example_High Current.tsp’, the func-
tion RunHighCurrent (sourcei,points) is created.

* sourcei represents the current value delivered to the
DUT. Note that the programmed current value for each
SMU is half the isource value.

* points represents the number of voltage measurements
acquired

If you wanted to source 2A total to the DUT and collect 100
voltage measurements, you would send
RunHighCurrent (2, 100) to the instrument.

10. The sources will be enabled, and the current source and
voltage measurements will be executed.

11. Once the measurements have been completed, the data will
be presented in the Instrument Console window of TSB.

6.1.3 Program 15 Description

After the SMUs are returned to default conditions, SMUA is con-
figured as follows:

* Source |

* 40V compliance, autorange

* Local sense

¢ 1 NPLC integration rate

* sourcei: Desired DUT current

* points: Number of points to measure

Next, SMUB is set up to operate in the following manner:

¢ Source I
* Local sensing
* 40V, autorange

* sourcei: Desired DUT current

After the instrument is set up, the outputs are zeroed and enabled.
Each SMU performs a DC current source and SMUA begins to
measure the voltage. When the data collection has reached the
desired number of points, the outputs are disabled and the voltage
data is printed to the Instrument Console of TSB.

6.2 Instrument Connections

WARNING
If either SMU reaches a compliance state, the instru-
ment, device, or both could be damaged. To avoid
this, set the compliance value to the maximum

for your instrument and avoid open or other high
resistance states for the SMUs when in Current
Source mode.

6.2.1 Program 16 Test Configuration

Figure 6-2 shows the test configuration for Program 16: SMUA
and SMUB outputs are wired in series, SMUA Lo to SMUB Hj,
SMUA Hi to DUT, SMUB Lo to DUT. This effectively doubles the
maximum voltage output and can deliver a total of 80V at 1A using
a Model 2602 System SourceMeter instrument.

6.2.2 Example Program 16: High Voltage
Source and Current Measure

Program 16 demonstrates how to deliver higher voltage sourcing
values using a dual-channel System SourceMeter instrument.
Follow these steps to use this program.

1. With the power off, connect the dual-channel Instrument to
the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the Instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 16),
manually enter the code from the appendix, or import the TSP

Output Output
LO HI

Series 2600
System SourceMeter

DUT

Figure 6-2. High voltage (SMUs in series)

SECTION 6
High Power Tests

file ‘KI12602Example High Voltage.tsp’ after downloading it
to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: btip:/www.
keithley.com/dataZasset=50960.

. Install a device (Power FET, LED array, etc.) in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘RunHighVoltage(sourcev, points)’, where
sourcei is the desired voltage value and points is the
number of voltage measurements.

. In the program ‘KI2602Example_High Voltage.tsp’, the func-
tion RunHighVoltage (sourcev,points) is created.

* sourcev represents the voltage value delivered to the
DUT Note that the actual voltage value programmed for
each SMU is half the sourcev value.

* points represents the number of voltage measurements
acquired

If you wanted to source 80V total to the DUT and collect 100
voltage measurements, you would send
RunHighVoltage (80, 100) to the instrument.

10. The sources will be enabled, and the voltage source and cur-
rent measurements will be executed.

11. Once the measurements have been completed, the data will
be presented in the Instrument Console window of TSB.

6.2.3 Program 16 Description

After the SMUs are returned to default conditions, SMUA is con-
figured as follows:

* Source V

* 1A compliance, autorange

¢ 1 NPLC integration rate

* sourcev: DUT voltage

* points: Number of points to measure

Next, SMUB is set up to operate in the following manner:

¢ Source |
¢ 1A, autorange

* sourcev: DUT voltage

After the instrument is set up, the outputs are zeroed and enabled.
Each SMU performs a DC voltage source and SMUA begins to
measure the current. When the data collection has reached the
desired number of points, the outputs are disabled and the cur-
rent data is printed to the Instrument Console of TSB.

Warning:
If either SMU reaches a compliance state, the instru-
ment, device, or both could be damaged. To avoid
this, set the compliance value to the maximum for
your instrument and avoid shorting the SMUs when
in Voltage Source mode.

6-3

SECTION 6
High Power Tests

6-4

Appendix A
Scripts

Section 2. Two-Terminal Devices

Program 1. Voltage Coefficient of Resistors

-- 1
Volt Co():

This program performs a voltage coefficient measurement on a 10GQ part.
Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter® instrument
(1) 10GQ resistor

Running this script creates functions that can be used to measure the voltage coefficient
of resistances.

The functions created are:
1. Volt Co(vlsrc, v2src) --Default values vlsrc = 100V, v2src = 200V
2. Check Comp ()
3. Calc Val(vlsrc, v2src, ilmeas, i2meas)
4. Print Data(voltco,resl,res2)
See detailed information listed in individual functions.
To run:
1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type Volt Co()

3) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.9.2007
11--

function Volt Co(vlsrc, v2src) --Configure instrument to supply two user-defined
--voltages and measure current.

--Instrument variables.

A-1

APPENDIX A

Scripts

A-2

local 1 srcdelay = 0 --Source delay before measurement
local 1 _icmpl = 1E-3 --Source compliance
local 1 _nplc = 1 --Measurement Integration Rate

local 1 _vlsrc = vlsrc --First voltage source value
local 1 v2src = v2src --Second voltage source value

--Define measured and calculated variables
local 1 _ilmeas = 0 --Initialize first current measurement
local 1 resl = 0 --Initialize first resistance measurement

local 1 _i2meas = 0 --Initialize second current measurement
local 1 res2 = 0 --Initialize second resistance measurement

0 --Initialize voltage coefficient calculation

local 1 _voltco
local 1 comp val = false --Initialize compliance variable

--Default values and level check

if (1_vlsrc == nil) then --Use default value
1 vlisrc = 100
end --if

if (1_vlsrc > 100) then --Coerce source value within range
1 vlisrc = 100
print (“Maximum voltage value is 202V!!")

end --if
if (1_v2src == nil) then --Use default value
1 v2src = 200
end --if
if (1_v2src > 200) then --Coerce source value within range

1 v2src = 200
print (“Maximum voltage value is 202V!!")
end --if

--Configure source and measure settings
smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

smua.source.func = smua.OUTPUT DCVOLTS --Output Voltage

smua.source.levelv = 0 --Source 0 before enabling output
smua.measure.nplc = 1 nplc --Set integration rate

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.limiti = 1 icmpl

smua.measure.autorangei = smua.AUTORANGE ON --Enable measurement autorange

APPENDIX A
Scripts

smua.source.output = smua.OUTPUT ON --Enable output
smua.source.levelv = 1 vlisrc --Source programmed value

1 comp val = Check Comp() --check compliance
if 1 comp val == true then
smua.source.output = smua.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to 0
else

delay (1l srcdelay) --wait before making measurement
1 ilmeas = smua.measure.i() --measure current

smua.source.levelv = 1 v2src --Source programmed value
delay (1l srcdelay) --wait before making measurement

1 i2meas = smua.measure.i() --Measure current

smua.source.output = smua.OUTPUT OFF --Disable output
1 voltco, 1 resl, 1 res2 = Calc Val(l vlsrc, 1 v2src, 1 ilmeas,l i2meas)
--calculate
Print Data(l voltco, 1 resl, 1 res2) --print
end --if

end --function Volt Co()
function Check Comp() --Function checks state of compliance, if true, prints warning and
returns
--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then

print (\\u)

print (*SMU Source in Compliance!”)

print (“Ensure proper connections, stable device, and settings are correct”)

print (“*Rerun Test”)

print (\\u)

end --if

return 1 _comp val

end --function Check Comp ()

A-3

APPENDIX A
Scripts

function Calc Val(vlsrc, v2src, ilmeas, i2meas) --function calculates resistance and
voltage coefficient

local 1 resl = vlsrc/ilmeas --Return quotient = resistance calculation

local 1 res2 = v2src/i2meas --Return quotient = resistance calculation

local 1 voltco = 100* (1 res2-1 resl)/(l resl*(v2src-vlsrc)) --Return quotient =
voltage coefficient

return 1 voltco, 1 _resl, 1 res2 --Return values
end --function Calc Val()

function Print Data(voltco,resl,res2)
local 1 _voltco = voltco
local 1 resl = resl
local 1 res2 = res2

print (™)

print (“**** Data ****”)

print (™)

print (“Woltage Coefficient: “, voltco, “%/V”) --Print Voltage Coefficient
print (™)

print (*Resistance R1: “, resl, “Ohms”) --Print resistance value

print (*Resistance R2: “, res2, “Ohms”) --Print resistance value

end --function Print Data()

--Volt Co() --Call Volt Col()

APPENDIX A
Scripts

Program 2. Capacitor Leakage Test

-- L
Cap_Leak() :

This program performs capacitor leakage measurement.
Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) 1pF aluminum electrolytic capacitor

Running this script creates functions that can be used to test capacitors.

The functions created are:
1. Cap_Leak(vsrc,soak) --Default value vsrc = 40V
2. Check Comp ()
3. Calc Val(vsrc, leaki)
4. Print Data(leaki, leakres)

See detailed information listed in individual functions.
To run:

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type Cap Leak()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.22.2007
11--

function Cap Leak(vsrc, soak) --Configure instrument to source user-defined voltage
--and measure current.

--Instrument variables.

local 1 soak = soak --Source delay before measurement (Recommended 7RC)
local 1 icmpl = 1E-2 --Source compliance

local 1 nplc = 1 --Measurement Integration Rate

local 1 vsrc = vsrc--Voltage source value

--Define measured and calculated variables
local 1 leaki = 0 --Initialize leakage current measurement
local 1 leakres = 0 --Initialize leakage resistance measurement

local 1 comp val = false --Initialize compliance variable

--Default setting and level check

A-5

APPENDIX A

Scripts
if (1_vsrc == nil) then --Use default value
1 vsrc = 40
end --if
if (1_vsrc > 100) then --Coerce source value within range
1 vsrc = 100
print (“Maximum voltage value is 100V!!")
end --if
if (1_soak == nil) then --Use default value
1 socak = 10
end --if
--Configure source and measure settings
smua.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
smua.source.func = smua.OUTPUT DCVOLTS --Output Voltage
smua.source.levelv = 0 --Source 0 before enabling output
smua.measure.nplc = 1 nplc --Set integration rate
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.limiti = 1_icmpl
smua.measure.autorangei = smua.AUTORANGE ON --Enable measurement autorange
--Begin test

smua.source.output = smua.OUTPUT ON --Enable output
smua.source.levelv = 1 vsrc --Source programmed value

delay (soak) --wait before making measurement
1 comp val = Check Comp() --check compliance
if 1 comp val == true then

smua.source.output = smua.OUTPUT OFF --Disable output

else
1 leaki = smua.measure.i() --measure current
smua.source.output = smua.OUTPUT OFF --Disable output
1 leakres = Calc_Val(l vsrc, 1 leaki) --calculate
Print Data(l leaki, 1 leakres) --print
end --if

end --function Cap_ Leak ()

APPENDIX A
Scripts

function Check Comp() --Function checks state of compliance, if true, prints warning and
returns
--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)
end --if

return 1 _comp val

end --function Check Comp ()

function Calc Val(vsrc, leaki) --function calculates resistance and voltage coefficient
local 1 _vsrc = vsrc --Pass global source variable to local
local 1 leaki = leaki --Pass global current variable to local
local 1 _leakres = 0 --Initialize leakage resistance local

1 leakres = vsrc/leaki --Return quotient = resistance calculation
return 1_leakres

end --function Calc Val()

function Print Data(leaki, leakres)

local 1 leaki = leaki
local 1 leakres = leakres

print (™)

print (“**** Data ****”)

print (™)

print (“Leakage Current: “, 1 leaki, “A”) --Print Leakage Current

print (™)

print (“Leakage Resistance: “, 1 leakres, “Ohms”) --Print resistance value

end --function Print Data()

--Cap_Leak() --Call Cap Leak() function

A7

APPENDIX A
Scripts

Program 3. Diode Characterization
Program 3A. Diode Characterization Linear Sweep

-- [
Diode Fwd Char(): USES TABLES

This program performs a forward characterization test on a diode and prints data.
Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) Silicon diode or equivalent

Running this script creates functions that can be used to measure the IV characteristics
of diodes.

The functions created are:
1. Diode Fwd Char(ilevel, start, stop, steps) --Default values ilevel = 0s,
start = 1ma, stop = 10ma

--steps = 10
2. Print Data(steps,volt,curr)
See detailed information listed in individual functions.
To run:
1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type Diode Fwd Char ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.22.2007

function Diode Fwd Char(ilevel, start, stop, steps) --Configure instrument to source a bias
current

--and perform a current sweep from start to stop in a user-defined number of steps. Returns
measured

--voltage and current values.

--Global variables

APPENDIX A
Scripts

local 1 _irange = 100E-2 --Current source range
local 1 _ilevel = ilevel --Initial source value
local 1 _vcmpl = 6 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 start = start --Sweep start current
local 1 stop = stop --Sweep stop current

local 1 steps = steps --Number of steps in sweep
local 1 delay = 0.001 --Source delay

--Default values and level check

if (1_ilevel == nil) then --Use default value
1 ilevel = 0
end --if

if (1_ilevel > 0.1) then --Coerce value
1 ilevel = 0.1
end --if

if (1_start == nil) then --Use default value
1 start = 1E-4
end --if

if (1_start > 1) then --Coerce value
1 start =1
end --if

if (1_stop == nil) then --Use default value
1 stop = 1E-2
end --if

if (1_stop > 1) then --Coerce value
1 stop =1
end --if

if (1_steps == nil) then --Use default value
1 steps = 100
end --if

if (1_steps > 1E3) then --Coerce value
1 steps = 1E3
end --if

local 1 step = (1 _stop - 1 start)/ (1 steps - 1) --Current step size
local 1 _source val = 1 start --Source value during sweep
local 1 i = 1 --Iteration variable

APPENDIX A
Scripts

--Data tables
local 1 curr = {} --Create data table for sourced current
local 1 volt = {} --Create data table for measured voltage

smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure SMUA source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS
smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli = 1 ilevel --Source
smua.source.limitv = 1_vcmpl
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange

smua.measure.nplc = 1 nplc --Measurement integration rate
smua.source.output = smua.OUTPUT ON --Enable Output
--Execute sweep

for 1 i =1, 1 steps do
--smua.source.leveli = 1 source val

delay (1l delay) --Wait before measurement
1 volt[1l_i] = smua.measure.v() --Measure voltage
1 curr[l_i] = smua.measure.i() --Measure current

1 source _val = 1 _source val + 1 _step --Calculate new source value
smua.source.leveli = 1 source val --Increment source
end--for

smua.source.output = smua.OUTPUT OFF --Disable output
smua.source.leveli = 1 ilevel --Return source to bias level

Print Data(l steps, 1 volt, 1 curr)
end--function Diode Fwd Chr ()

function Print Data (steps,volt,curr)
--Print Data to output queue

--Local Variables

local 1 _steps = steps

local 1 volt = volt

local 1 curr = curr

print (“Voltage Data (V) :")

for 1 i =1, 1 steps do
print (1_volt([1l i])

end

print (™)

A-10

APPENDIX A
Scripts

print (“*Source Current Data (A):")
for 1 i =1, 1 steps do

print (1_curr[l i])
end

end --function Print Data()

--Diode Fwd Chr()

Program 3B. Diode Characterization Log Sweep

-- [0
Diode Fwd Char Log(): USES TABLES

This program performs a log sweep forward characterization test on a diode and prints
data.

Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) Silicon diode or equivalent

Running this script creates functions that can be used to measure the IV characteristics
of diodes.

The functions created are:

1. Diode Fwd Char Log(ilevel, start, stop, points) --Default values ilevel =
0s,
--start = lua, stop = 10ma
--points = 10
2. Print Data(steps,volt,curr)
See detailed information listed in individual functions
To run:

1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type Diode Fwd Char Log()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 10.12.2007

11--

A-11

APPENDIX A

Scripts

function Diode Fwd Char Log(ilevel, start, stop, points)

a bias

--CConfigure instrument to source

--current, and perform a logarithmic current sweep from start to stop in a user-defined
number of points per decade.
--Returns measured voltage and current values.

A-12

--Global variables

local 1 _irange = 100E-2 --Current source range
local 1 _ilevel = ilevel --Initial source value
local 1 _vcmpl = 6 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 _start = start --Sweep start current

local 1 stop = stop --Sweep stop current

local 1 points = points --Number of steps in sweep
local 1 delay = 0.01 --Source delay

--Default values and level check

if (1_ilevel == nil) then --Use default value
1 ilevel = 0
end --if

if (1_ilevel > 0.1) then --Coerce value
1 ilevel = 0.1

end --if

if (1_start == nil) then --Use default value
1 start = 1E-6

end --if

if (1_start > 1) then --Coerce value
1 start =1
end --if

if (1_stop == nil) then --Use default value
1 stop = 1E-2

end --if

if (1_stop > 1) then --Coerce value

1 stop =1
end --if
if (1_points == nil) then --Use default value

1 points = 10

APPENDIX A

Scripts
end --if
if (1_points > 1E3) then --Coerce value
1 points = 1E3
end --if
local 1 step = (math.logl0(l stop) - math.loglO(l start))/(l points - 1)
--Current step size
local 1 source val = math.logl0(l start) --Source value during sweep
local 1 i = 1 --Iteration variable
--Data tables
local 1 curr = {} --Create data table for sourced current
local 1 volt = {} --Create data table for measured voltage
smua.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
--Configure SMUA source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS
smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli = 1 ilevel --Source bias
smua.source.limitv = 1_vcmpl
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange
smua.measure.nplc = 1 nplc --Measurement integration rate
smua.source.output = smua.OUTPUT ON --Enable Output
--Execute sweep
for 1 i = 1, 1 points do
smua.source.leveli = math.pow(10, 1 source val) -- Program source to sweep
level.
delay (1l delay) --Wait before measurement
1 volt[1l_i] = smua.measure.v() --Measure voltage
1 curr[l_i] = smua.measure.i() --Measure current

1 source _val = 1 _source val + 1 _step --Increment source value
end--for

smua.source.output smua.OUTPUT OFF --Disable output
smua.source.leveli = 1 ilevel --Return source to bias level

Print Data(l points, 1 volt, 1 curr)

end--function Diode Fwd Chr ()

function Print Data (points,volt,curr)

A-13

APPENDIX A
Scripts

--Print Data to output queue

--Local Variables

local 1 _points = points
local 1 volt = volt
local 1 _curr = curr

print (“Voltage Data (V) :")
for 1 i = 1, 1 points do
print (1_volt ([l i])

end

print (™)
print (“*Source Current Data (A):")

for 1 i = 1, 1 points do
print (1_curr[l i])
end

end --function Print Data()

--Diode Fwd Chr Log ()

Program 3C. Diode Characterization Pulsed Sweep

-- [
Diode Fwd Char Pulse(): USES TABLES

This program performs a forward characterization test on a diode using a pulsed source and
prints data. The default is a 50% duty cycle (i.e., ton = toff)

Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) Silicon diode or equivalent

Running this script creates functions that can be used to measure the IV characteristics
of diodes.

The functions created are:

1. Diode Fwd Char Pulse(ilevel, start, stop, ton, toff, steps) --Default values ilevel =
0s, start =

--1lma, stop = 10ma, ton

10ms,
--toff = 10ms, steps = 10
2. Print Data(steps,volt,curr)

See detailed information listed in individual functions

A-14

APPENDIX A

Scripts

To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type Diode Fwd Char ()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.
Revl: JAC 5.22.2007
11--
—————————————————— Keithley TSP Function ------------------
function Diode Fwd Char Pulse(ilevel, start, stop, ton, toff, steps) --Configure instrument

to source a

--bias current,and perform a pulsed current sweep from start to stop in a user-defined
number of steps.

--Each pulse is on ton (s) and off toff (s) and returns to the bias level during the toff
time.

--Returns measured voltage and current values.

--Global variables

local 1 _irange = 100E-2 --Current source range
local 1 _ilevel = ilevel --Initial source value
local 1 _vcmpl = 6 --Source compliance

--Shared local variables
local 1 nplc = 0.1 --Integration rate of measurement

--Local sweep variables

local 1 _start = start --Sweep start current

local 1 stop = stop --Sweep stop current

local 1 steps = steps --Number of steps in sweep

local 1 delay = 0.001 --Source delay

local 1 ton = ton --Pulse on duration

local 1 toff = toff --Pulse off duration

local 1 _tonwm --Adjusted Pulse on duration to accomodate Measurement Duration

--Default values and level check

if (1_ilevel == nil) then --Use default value
1 ilevel = 0
end --if

if (1_ilevel > 1E-1) then --Coerce value
1 ilevel = 1E-1
end --if

A-15

APPENDIX A
Scripts

if (1_start == nil) then --Use default value
1 start = 1E-3
end --if

if (1_start > 0.1) then --Coerce value
1 start = 0.1
end --if

if (1_stop == nil) then --Use default value
1 stop = 1E-2
end --if

if (1_stop > 0.1) then --Coerce value
1 stop = 0.1
end --if

if (1_ton == nil) then --Use default value
1 ton = 10E-3
end --if

if (1_ton > 1E-1) then --Coerce value
1 ton = 1E-1
end --if

if (1_toff == nil) then --Use default value
1 toff = 10E-3
end --if

if (1_toff > 1E-1) then --Coerce value
1 toff = 1E-1
end --if

if (1_steps == nil) then --Use default value
1 steps = 100
end --if

if (1_steps > 1E3) then --Coerce value
1 steps = 1E3
end --if

local 1 step = (1 _stop - 1 start)/ (1 _steps - 1) --Current step size
local 1 _source val = 1 start --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables
local 1 curr = {} --Create data table for sourced current
local 1 volt {} --Create data table for measured voltage

A-16

APPENDIX A

Scripts
1 tonwm = 1 ton - (2*smua.measure.nplc/localnode.linefreq) - 250E-6 --Adjust pulse
duration by
--accounting for measurement time
smua.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
--Configure SMUA source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS
smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli = 1 ilevel --Source
smua.source.limitv = 1_vcmpl
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange
smua.measure.nplc = 1 nplc --Measurement integration rate
smua.source.output = smua.OUTPUT ON --Enable Output
--Execute sweep
for 1 i =1, 1 steps do
smua.source.leveli = 1 source val
delay (1l tonwm) -- Wait pulse time - measurement & overhead time.
1 volt[1l_i] = smua.measure.v() --Measure voltage
1 curr[l_i] = smua.measure.i() --Measure current
smua.source.leveli = 1 ilevel -- Return source to bias level.
delay (1l toff) -- Wait pulse off time.

1 source _val = 1 _source val + 1 _step --Calculate new source value
smua.source.leveli = 1 source val --Increment source --]]
end--for

smua.source.output smua.OUTPUT OFF --Disable output
smua.source.leveli = 1 ilevel --Return source to bias level

Print Data(l steps, 1 volt, 1 curr)
end--function Diode Fwd Chr ()

function Print Data (steps,volt,curr)
--Print Data to output queue

--Local Variables
local 1 _steps = steps
local 1 volt = volt
local 1 _curr = curr

print (“Voltage Data (V) :")
for 1 i =1, 1 steps do

print (1_volt([1l i])
end

A-17

APPENDIX A
Scripts

print (\\u)
print (“*Source Current Data (A):")

for 1 i =1, 1 steps do
print (1_curr[l i])
end

end --function Print Data()

--Diode Fwd Chr Pulse()

A-18

APPENDIX A
Scripts

Section 3. Bipolar Transistor Tests
Program 4. Common-Emitter Characteristics

-- [0
BJT_Comm_Emit () : USES TABLES

This program applies a bias to the base of a BJT (Ib) and sweeps voltage on the collector/
emitter (VCE). The VCE, IB, and IC are then printed.

Required equipment:

(1) Dual-channel Series 2600 System SourceMeter instrument
(1) 2N5089 NPN Transistor

Running this script creates functions that can be used to measure the common emitter
characteristics of transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. BJT Comm Emit (istart, istop, isteps, vstart, vstop, vsteps)
--Default values istart = 10uA, istop = 50uA, isteps = 5, vstart = 0V,
vstop = 10V, vsteps = 100
2. Print Data(isteps,vsteps, ce volt,ce curr, base curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type BJT Comm Emit ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.22.2007

function BJT Comm Emit (istart, istop, isteps, vstart, vstop, vsteps) --Configure SMUB to
source a bias

--current on the base and SMUA performs a voltage sweep on the Collector-Emitter from
start to stop in a

--user-defined number of steps.

--SMUB then increments to next bias value and continues to stop value.

--Returns measured voltage and current values.

--Global variables
local 1 irange = 100E-6 --Base current source range

A-19

APPENDIX A
Scripts

local 1 _vcmpl = 1 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100E-3 --Collector-emitter source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 istart = istart --Base sweep start current
local 1 istop = 1istop --Base sweep stop current
local 1 isteps = isteps --Number of steps in sweep

local 1 vstart = vstart --Collector-emitter sweep start voltage
local 1 vstop = vstop --Collector-emitter sweep stop voltage

local 1 vsteps = vsteps --Number of steps in sweep

--Default values and level check

if (1_istart == nil) then --Use default value
1 istart = 10E-6
end --if

if (1_istart > 100E-6) then --Coerce value
1 istart = 100E-6
end --if

if (1_istop == nil) then --Use default value
1l istop = 50E-6
end --if

if (1_istop > 500E-6) then --Coerce value
1 istop = 500E-6

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 5

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100
end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size
local 1 _isource val = 1 _istart --Source value during sweep
local 1 i = 1 --Iteration variable

if (1_vstart == nil) then --Use default value
1 vstart = 0
end --if

A-20

APPENDIX A
Scripts

smua.
smua.
smua.

smua.
smua.

smub.
smub.

if (1_vstart > 100E-3) then --Coerce value
1 vstart = 100E-3

end --if

if (1_vstop == nil) then --Use default value
1 vstop = 10

end --if

if (1_vstop > 40) then --Coerce value
1 vstop = 40

end --if

if (1_vsteps == nil) then --Use default value
1 vsteps = 100

end --if

if (1_vsteps > 2E+2) then --Coerce value
1 vsteps = 2E+2
end --if

local 1 vstep = (1 vstop - 1 vstart)/ (1 vsteps - 1) --Voltage step size

local 1 _vsource val = 1 vstart --Source value during sweep
local 1 v = 1 --Iteration variable

--Data tables
local 1 base curr
local 1 _ce volt
local 1 _ce curr

{} --Create data table for sourced current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
source.levelv = 0
source.limiti = 1 icmpl
measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

measure.autozero = smua.AUTOZERO_AUTO
measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Base (SMUB) source and measure settings
smub.source.func = smub.OUTPUT_DCAMPS
source.autorangei = smub.AUTORANGE ON --Enable source autorange
source.leveli = 0

{} --Create data table for collector-emitter measured voltage
{} --Create data table for collector-emitter measured current

A-21

APPENDIX A
Scripts

smub.source.limitv = 1_vcmpl
smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output

--Execute sweep
for 1 i =1, 1 isteps do

smub.source.leveli = 1 isource val

1 ce volt[l i] = {} --Create new row in table
1 ce curr[l i] = {} --Create new row in table

1 base curr[l_i] = smub.measure.i() --Measure base current
for 1 v = 1,1 _vsteps do
if (1_v == 1) then --Intialize start source value
1 vsource val = 1 vstart

end --if

delay(0.001) --Delay
1 ce volt[1l i][1 v] = smua.measure.v() --Measure voltage
1 ce curr(l i][1 v] = smua.measure.i() --Measure current

1 vsource val = 1 vsource val + 1 _vstep --Calculate new source value

if (1_v == 1 _vsteps) then --Reinitialize voltage value after last
iteration
1 vsource val = 1 _vstart

end --if

smua.source.levelv = 1 vsource val --Increment source
end --for
1 isource val = 1 isource val + 1 _istep --Calculate new source value

end--for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level
smub.source.leveli = 0 --Return source to bias level

A-22

APPENDIX A
Scripts

Print Data(l isteps,l vsteps, 1 ce volt, 1 ce curr, 1 base curr)

end--function BJT Comm_ Emit ()

function Print Data(isteps,vsteps, ce volt,ce curr, base curr)
--Print Data to output queue

--Local Variables

local
local
local
local
local
local
local

1 isteps = isteps

1 vsteps = vsteps

1 i=1 --Tteration variable
l v =1 --ITteration variable
1 ce volt = ce_volt

1 ce curr = ce_curr

1 base curr = base curr

for 1 i =1, 1 isteps do

print (“”)
print (“Base Current Bias”, 1 base curr[l i])
print (*Emitter Voltage (V)”,”Emitter Current (A)”")

for 1 v = 1, 1 vsteps do

print (1 _ce volt[1l i][1 v], 1 ce curr[l i][1 v])

end --for

end --for

end --function Print Data()

--BJT_ Comm_ Emit ()

A-23

APPENDIX A
Scripts

Program 5. Gummel Plot

-- [
Gummel () : USES TABLES

This program performs a series of voltage sweeps on the base-emitter (VBE) of a BJT at a
fixed collector-emitter voltage (VCE). The base-emitter (IB) and collector-emitter (IC)
currents are measured and printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN Transistor

Running this script creates functions that can be used to create a Gummel plot of
transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. Gummel (vbestart, vbestop, vbesteps, vcebias)
--Default values vbestart = 0V, vbestop = 0.7V, vbesteps = 70, vcebias =
10V
2. Print Data(vbesteps,vbe, vcebias, ic, ib)

See detailed information listed in individual functions.
To run:

1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type Gummel ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.30.2007

function Gummel (vbestart, vbestop, vbesteps, vcebias) --Configure SMUB to perform a voltage
sweep on the

--base (Vbe) from start to stop in a user-defined number of steps while SMUA performs a
fixed voltage bias on the

--collector-emitter. SMUA then increments to next bias value and continues to stop value.
--Returns measured Ib, Ic, and Vbe.

--Global variables
local 1 icmpl = 100E-3 --Source compliance

A-24

APPENDIX A

Scripts

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vbestart = vbestart --Base sweep start voltage
local 1 vbestop = vbestop --Base sweep stop voltage
local 1 vbesteps = vbesteps --Number of steps in sweep

local 1 _vcebias = vcebias --Collector-emitter voltage

--Default values and level check

if (1_vbestart == nil) then --Use default value
1 vbestart = 0
end --if

if (1_vbestart > 100E-6) then --Coerce value
1 vbestart = 100E-6
end --if

if (1_vbestop == nil) then --Use default value
1 _vbestop = 700E-3
end --if

if (1_vbestop > 1) then --Coerce value
1 vbestop =1

end --if

if (1_vbesteps == nil) then --Use default value
1 _vbesteps = 70

end --if

if (1_vbesteps > 100) then --Coerce value
1 vbesteps = 100
end --if

local 1 vbestep = (1 vbestop - 1 vbestart)/ (1 vbesteps - 1) --Vbe step size
local 1 _vbesource val = 1 vbestart --Source value during sweep
local 1 vbe i = 1 --Iteration variable

if (1_vce bias == nil) then --Use default value
1 vce bias = 10
end --if

if (1_vce bias > 40) then --Coerce value
1 vce bias = 40
end --if

--Data tables
local 1 vbe = {} --Create data table for sourced voltage

A-25

APPENDIX A
Scripts

local 1 ic = {} --Create data table for Ic
local 1 ib = {} --Create data table for Ib

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0
smua.source.limiti = 1 _icmpl
smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Base (SMUB) source and measure settings

smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output smub.OUTPUT ON --Enable Output
smua.source.levelv = 1 vce bias

--Execute sweep
for 1 vbe i = 1,1 vbesteps do

if (1_vbe i == 1) then --Intialize start source value
1 vbesource val = 1 vbestart
end --if

delay(0.01) --Delay

1 vbe[l vbe i] = smub.measure.v() --Measure Vbe
1 ib[1 vbe i] = smub.measure.i() --Measure Ib
1 ic[l _vbe i] = smua.measure.i() --Measure Ic

1 vbesource val = 1 vbesource val + 1 vbestep --Calculate new source value

A-26

APPENDIX A
Scripts

if (1_vbe i == 1 vbesteps) then --Reinitialize voltage value after last

iteration

1 vbesource val =

end --if

1 vbestart

smub.source.levelv = 1 vbesource val --Increment source

end --for

smua.source.output
smub.source.output

smua.source.levelv
smub.source.levelv

smua.OUTPUT OFF --Disable
smub.OUTPUT OFF --Disable

0 --Return source to bias
0 --Return source to bias

output
output

level
level

Print Data(l vbesteps, 1 vbe,1 vce bias, 1 ic, 1 ib)

end--function Gummel ()

function Print Data (vbesteps,vbe, vcebias, ic, ib)
--Print Data to output queue

--Local Variables

vbesteps
1 --Iteration variable

= vcebias

local 1 vbesteps =
local 1 _vbe i =

local 1 _vbe = vbe

local 1 vce bias

local 1_ic = ic

local 1_ib = ib

print (™)

print (“Vce”, 1 vce bias)
print (“Vbe (V)”,”Ib

for 1 vbe i = 1, 1 vbesteps

(A) II’IIIC

(A)")

do

print (1 _vbe[l vbe i],1 ic[l vbe i], 1 ib[l vbe il)

end --for

end --function Print Data()

--Gummel ()

A-27

APPENDIX A
Scripts

Section 6. High Power Tests

Program 6. Current Gain
Program 6A. Current Gain (Search Method)

-- [
DC Gain Search():

This program performs a binary search on the base current (IB) of a BJT at a fixed
collector-emitter voltage (VCE). The base-emitter (IB) and collector-emitter (IC) currents
are measured and the IB, IC, and DC gain values are printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN transistor

Running this script creates functions that can be used to create a DC gain search of
transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. DC Gain Search(vcesource, lowib, highib, targetic)
--Default values vcesource = 5V, lowib = 1le-9A, highib = 100e-7A4,
targetic = 100e-6A
2. Check Comp ()

See detailed information listed in individual functions.
To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type DC _Gain Search()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.11.2007

function DC Gain Search(vcesource, lowib, highib, targetic) --Configure SMUB to source a
user-defined

--current on the base (Ib) while SMUA performs a fixed voltage bias on the collector-
emitter. SMUB then performs a

A-28

APPENDIX A
Scripts

--binary
measured.
--outside
specified
--limit i
--Returns

local
local
local
local
local
local
local

local
local

search between a Maximum and Minimum Ib value, and the collector current is
If measured value is

the tolerance, search is performed again until the value falls within the
range or the iteration

s reached.

measured Ib, Ic, and the DC Gain/Beta.

1 k --binary search iteration variable

1 k max = 20 --Maximum loop iteration

1 vce_source = vcesource --VCEsource value

1 high ib = highib --Start Ib high limit

1 low ib = lowib --Start Ib lo limit

1 target ic = targetic --Target Ic for binary search
1 nplc =1

1 ic_meas
1 ib_source --Base current

local 1 _beta meas

--Default values and level check

if (1_vce source == nil) then --Use default value
1 vce_source = 5
end --if
if (1_low_ib == nil) then --Use default value
1 low ib = le-9
end --if
if (1_high ib == nil) then --Use default value
1 high ib = 100E-7
end --if
if (1_target_ic == nil) then --Use default value
1 target_ic = 100e-6
end --if
smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
smua.measure.nplc = 1 nplc --Measurement integration rate
smub.measure.nplc = 1 nplc --Measurement integration rate
smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.limiti = (100 * 1 target ic) --Set compliance value
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange
smub.source.func = smub.OUTPUT_DCAMPS

A-29

APPENDIX A
Scripts

smub.source.autorangei = smub.AUTORANGE ON --Enable source autorange
smub.source.limiti = 1 _high ib

smub.source.limitv = 6

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

--Start test
smua.source.levelv = 1 vce source --Set source level

smub.source.leveli = 0 --Set source level

smua.source.output = smua.OUTPUT ON --Enable output
smub.source.output = smub.OUTPUT ON --Enable output

delay(0.001) --Delay
1 comp val = Check Comp() --check compliance
if 1 comp val == true then --If unit is in compliance, end

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to 0
smub.source.leveli = 0 --Return source to 0

else

--Search for the right base current

repeat --Repeat search until measured Ic is within 5% of target, iteration maximum

reached, or

--compliance.
1 k=1%k+ 1 --Increment

1 ib source = ((1_high ib-1 low ib)/2) + 1 low ib --Determine source value

(Binary Search)

A-30

smub.source.leveli = 1 ib source --Program new source value
delay(0.0001) --Source delay

1 comp val = Check Comp() --check compliance
if 1 comp val == true then --If unit is in compliance, end
smua.source.output = smua.OUTPUT OFF --Disable output

smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv = 0 --Return source to 0
smub.source.leveli = 0 --Return source to 0

else

APPENDIX A
Scripts

1l ic_meas = smua.measure.i() --Measure Ic

if (1_target_ic < 1 _ic_meas) then --Compare measurement with
target value
1 high ib = 1 ib_source
else
1 low ib = 1_ib source
end --end if
end --ifelse

if 1 ic_meas == nil then --If no measurement taken, initialize to 0 to avoid arithmetic
--error in until statement below
1 ic_ meas = 0
end --if

until ((math.abs(l ic meas - 1 target ic) < (0.05*1 target ic))or(l _k>1 k max))
or(l comp val == true) --

--iteration limit reached
if (1 k > 1 k max) then
print (“Iteration Limit Reached!!”)
end --end if

smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output smub.OUTPUT OFF --Disable output

1 beta data = 1 ic meas/l ib source --Calculate gain
print (“Ic Data:”, 1 _ic_meas) --Print Ic data
print (“Ib Data:”, 1 ib source) --Print Ib
print (“Beta Data:”,1 beta data) --Print gain
end --ifelse
end--function DC Gain_ Search()
function Check Comp() --Function checks state of compliance, if true, prints warning and
returns
--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)

A-31

APPENDIX A
Scripts

end --if
return 1 _comp val
end --function Check Comp ()

--DC_Gain Search()

Program 6B. Current Gain (Fast Method)

-- [
DC Gain Fast()

This program applies a bias to the collector/emitter of a BJT (Vce) and sweeps current on
the emitter (IE). The gain for each emitter value is then printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN Transistor

Running this script creates functions that can be used to measure the gain characteristics
of transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. DC Gain Fast(vcesource, istart, istop, isteps)
--Default values vcesource = 10V, istart = 1mA, istop = 10mA, isteps = 10
2. Print Data(isteps, emitter curr, base curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type DC _Gain Fast()

2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.11.2007

function DC Gain Fast (vcesource, istart, istop, isteps) --Configure SMUB to source a bias
voltage

--on the base and SMUA performs a current sweep on the emitter from start to stop in a
user-defined number of steps.

A-32

APPENDIX A
Scripts

--Returns gain values.

--Global variables
local 1 irange = 100e-6 --Base current source range
local 1 vempl = 11 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100e-3 --Collector-emitter source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 istart = istart --Base sweep start current
local 1 istop = 1istop --Base sweep stop current
local 1 isteps = isteps --Number of steps in sweep

local 1 vce source = vcesource --Vce source value

--Default values and level check

if (1_vce source == nil) then --Use default value
1 vce_source = -10
end --if

if (1_vce source > 0) then --Coerce value

1 vce source = -1 vce source

end --if

if (1_istart == nil) then --Use default value
1 istart = -le-3

end --if

if (1_istart > 0) then --Coerce value
1 istart = -1 istart
end --if

if (1_istop == nil) then --Use default value
1l istop = -10e-3
end --if

if (1_istop > 0) then --Coerce value
1 istop = -i _stop

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 10

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100

A-33

APPENDIX A
Scripts

end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size
local 1 _isource val = 1 _istart --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables
local 1 base curr = {} --Create data table for sourced current
local 1 emitter curr = {} --Create data table for emitter current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure emitter current (SMUA) source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS

smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli 0
smua.source.limitv = 1_vcmpl
smua.source.output = smua.OUTPUT ON --Enable Output

--Configure collector/emitter (SMUB) source and measure settings
smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangei = smub.AUTORANGE ON --Enable source autorang
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangei = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output
smub.source.levelv = 1 vce source --Program source

--Execute sweep
for 1 i =1, 1 isteps do

smua.source.leveli = 1 isource val

delay(0.01)
1 base curr[l i] = smub.measure.i() --Measure base current
1 emitter curr[l_i] = smua.measure.i() --Measure emitter current

1 isource val = 1 isource val + 1 _istep --Calculate new source value

end--for

A-34

APPENDIX A
Scripts

smua.source.output =
smub.source.output =

smua.source.levelv =
smub.source.leveli =

Print Data(l_isteps,

end--function DC Gain Fast ()

function Print Data(isteps,

smua.OUTPUT OFF --Disable output
smub.OUTPUT _OFF --Disable output

0 --Return source to bias level
0 --Return source to bias level

1 emitter curr, 1 base curr)

emitter curr, base curr)

--Print Data to output queue

--Local Variables

local 1 isteps = isteps
local 1 i = 1 --Iteration variable

local 1 _emitter curr

= emitter_curr

local 1 base curr = base curr
local 1 gain = {} --Gain variable

print (\\u)

print (*Base Current (A)”, “Emitter Current (A)”, “Gain”)

for 1 i =1, 1 isteps

do

1 gain[l i] = (math.abs(l emitter curr[l i]) - math.abs(l base curr[l i]))/math.
abs (1 _base_curr[l i]) ----Calculate gain

print (math.abs (1l base curr[l i]), math.abs(l emitter curr(l il), 1_

gain[l i])
end --for
end --function Print Data()

--DC_Gain Fast()

A-35

APPENDIX A
Scripts

Program 7. AC Current Gain

-- [
AC Gain():

This program sources two base currents (IB) on a BJT at a fixed collector-emitter voltage
(VCE) . The base-emitter (IB) and collector-emitter (IC) currents are measured and the IB,
IC, and AC gain values are printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN transistor

Running this script creates functions that can be used to perform a differential gain
measurement on transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. AC Gain(vcesource, ibl, ib2)
--Default values vcesource = 5V, 1ibl = le-7A, 1b2= 2e-7A
2. Check Comp ()

See detailed information listed in individual functions.
To run:

1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type AC Gain()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.12.2007

function AC Gain(vcesource, ibl, ib2) --Configure SMUB to source a user-defined current on
the base (Ib)

--while SMUA performs a fixed voltage bias on the collector-emitter and the Ic is measured.
--SMUB then steps to the next base current and the Ic is measured.

--The AC Gain is then calculated.

--Returns measured Ibl, Ib2, Icl, Ic2 and the AC Gain/Beta.

local 1 vce source = vcesource --VCEsource value
local 1 ibl = ibl --Ib 1 source value

A-36

APPENDIX A
Scripts

local
local

local
local
local

1 ib2 = ib2 --Ib 2 source value
1 nplc =1

1l ic_measl = 0 --Ic measurement
1l ic_meas2 = 0 --Ic measurement
1 beta meas --Gain calculation variable

--Default values and level check

if (1_vce source == nil) then --Use default value
1 vce_source = 5

end --if

if (1_ibl == nil) then --Use default value
1 ibl = 1.45e-7

end --if

if (1_ib2 == nil) then --Use default value
1 ib2 = 1.6e-7

end --if

smua.reset () --Reset SMU

smub.reset () --Reset SMU

errorqueue.clear() --Clear the error queue

smua.measure.nplc = 1 nplc --Measurement integration rate
smub.measure.nplc = 1 nplc --Measurement integration rate

smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange

smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange

smub.source.func = smub.OUTPUT_DCAMPS

smub.source.autorangei = smub.AUTORANGE ON --Enable source autorange
smub.source.limitv = 6

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

--Start test
smua.source.levelv = 1 vce source --Set source level
smub.source.leveli = 0 --Set source level

smua.source.output = smua.OUTPUT ON --Enable output
smub.source.output = smub.OUTPUT ON --Enable output

delay(0.001) --Delay

smub.source.leveli = 1 ibl --Program new source value
delay(0.001) --Source delay

A-37

APPENDIX A

Scripts
--1 comp val = Check Comp() --check compliance
if 1 comp val == true then --If unit is in compliance, end
smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output
smua.source.levelv = 0 --Return source to 0
smub.source.leveli = 0 --Return source to 0
else
1 ic_measl = smua.measure.i() --Measure Ic 1
smub.source.leveli = 1 ib2 --Program new source value
1l ic_meas2 = smua.measure.i() --Measure Ic 2
1 beta data = (1 ic meas2 - 1 ic measl)/(1 ib2 - 1 ibl) --Calculate gain
print (“”) -
print (*Ib 1(A) “, “Ic 1(A) “, “Ib 2(Aa) “, “Ic 2(a) “)
print(1_ibl, 1 ic measl, 1 ib2, 1 ic meas2) --Print Ib and Ic data

print (“") --
print (*Differential Gain”)
print (1_beta data) --Print gain

end --ifelse

smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

end --function AC _Gain()
function Check Comp() --Function checks state of compliance, if true, prints warning and
returns

--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)
end --if

return 1 _comp val

A-38

APPENDIX A
Scripts

end --function Check Comp ()

--AC Gain()

Program 8. Transistor Leakage (ICEO)

-- [
Iceo(): USES TABLES

This program sweeps the voltage on the collector/emitter (VCE) of a BJT with an open base.
The VCEO and ICEO values are then printed.

Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N3904NPN transistor

Running this script creates functions that can be used to measure open base voltage and
current characteristics of transistors. The default values are for an NPN transistor type
2N3904.

The functions created are:
1. Iceo(vstart, vstop, vsteps)
--Default values vstart = 0V, vstop = 10V, vsteps = 100
2. Print Data(vsteps, ce volt,ce curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type Vceo()

2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.12.2007

function Iceo(vstart, vstop, vsteps) --Configure SMUA to perform a voltage

--sweep from start to stop in a user-defined number on the collector/emitter of a BJT with
an open base. The collector --current (Iceo) is measured at each voltage value.

--Returns programmed voltage and measured current values.

A-39

APPENDIX A
Scripts

--Global variables
local 1 irange = 100E-6 --Base current source range
local 1 vempl = 1 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100E-3 --Collector-emitter source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vstart = vstart --Collector-emitter sweep start voltage
local 1 vstop = vstop --Collector-emitter sweep stop voltage
local 1 vsteps = vsteps --Number of steps in sweep

--Default values and level check
local 1 i = 1 --Iteration variable

if (1_vstart == nil) then --Use default value
1 vstart = 0
end --if

if (1_vstart > 100E-3) then --Coerce value
1 vstart = 100E-3

end --if

if (1_vstop == nil) then --Use default value
1 vstop = 10

end --if

if (1_vstop > 40) then --Coerce value
1 vstop = 40

end --if

if (1_vsteps == nil) then --Use default value
1 vsteps = 100

end --if

if (1_vsteps > 2E+2) then --Coerce value
1 vsteps = 2E+2
end --if

local 1 vstep = (1 vstop - 1 vstart)/ (1 vsteps - 1) --Voltage step size
local 1 vsource val = 1 vstart --Source value during sweep

--Data tables
local 1 ce volt = {} --Create data table for collector-emitter measured voltage

local 1 ce curr = {} --Create data table for collector-emitter measured current

smua.reset () --Reset SMU

A-40

APPENDIX A
Scripts

errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0 --Source 0V
smua.source.limiti = 1 icmpl --Set compliance level
smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output
smua.source.levelv = 1 vsource val --Program source value

--Execute sweep
for 1 i =1, 1 vsteps do

delay(0.01)
1 ce volt[l i] = 1 vsource val --Save programmed voltage
1 ce curr[l_i] = smua.measure.i() --Measure current

1 vsource val = 1 vsource val + 1 _vstep --Calculate new source value
smua.source.levelv = 1 vsource val --Increment source
end--for

smua.source.output = smua.OUTPUT OFF --Disable output
smua.source.levelv = 0 --Return source to bias level

Print Data(l vsteps,l ce volt, 1 ce curr)
end--function Vceo ()

function Print Data(vsteps, ce volt,ce curr)
--Print Data to output queue

--Local Variables

local 1 vsteps = vsteps

local 1 i = 1 --Iteration variable
local 1 _ce volt = ce_volt

local 1 ce curr = ce_curr

print (\\u)
print (“Vceo (V)" ,”Iceo (A)")

A-41

APPENDIX A
Scripts

for 1 i =1, 1 vsteps do
print (1 _ce volt[l i], 1 ce curr(l i])
end --for

end --function Print Data()

--Iceo()

A-42

APPENDIX A
Scripts

Section 4. FET Tests

Program 9. Common-Source Characteristics

-- 1
FET Comm_ Source (): USES TABLES

This program applies a bias to the gate-source of an FET (VGS) and sweeps voltage on the
drain-source (VDS). The VDS and ID values at each VGS bias are then printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-Channel MOSFET

Running this script creates functions that can be used to measure the common source
characteristics of
FETs. The default values are for an N-channel MOSFET type SD210.

The functions created are:
1. FET Comm_Source (vgsstart, vgsstop, vgssteps, vdsstart, vdsstop, vdssteps)
--Default values vgsstart = 0, vgsstop = 10V, vgssteps = 5, vdstart = 0V,
vdstop = 10V, vdsteps = 100
2. Print Data(vgssteps,vdssteps, vds data,Id data, vgs data)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type FET Comm Source ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.18.2007

function FET Comm Source (vgsstart, vgsstop, vgssteps, vdsstart, vdsstop, vdssteps)
--Configure SMUB to source a bias

--voltage on the gate-source (Vgs) and SMUA performs a voltage sweep on the drain-source
(Vds) from start to stop in a --user-defined number of steps. SMUB then increments to next
bias value and continues to the stop value.

--Returns measured Vgs, Vds, and Id values.

--Global variables
local 1 vrange = 40 --

A-43

APPENDIX A
Scripts

local 1 icmpl = 100E-3 --

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgsstart = vgsstart --Gate-source sweep start voltage
local 1 vgsstop = vgsstop --Gate-source sweep stop voltage
local 1 vgssteps = vgssteps --Number of steps in sweep

local 1 vdsstart = vdsstart --Drain-source sweep start voltage
local 1 vdsstop = vdsstop --Drain-source sweep stop voltage

local 1 vdssteps = vdssteps --Number of steps in sweep

--Default values and level check

if (1_vgsstart == nil) then --Use default value
1 vgsstart = 0
end --if

if (1_vgsstart > 10) then --Coerce value
1 vgsstart = 10
end --if

if (1 _vgsstop == nil) then --Use default value
1 vgsstop = 10
end --if

if (1 _vgsstop > 10) then --Coerce value
1 vgsstop = 10
end --if

if (1 _vgssteps == nil) then --Use default value
1 vgssteps = 5
end --if

if (1_vgssteps > 100) then --Coerce value
1 vgssteps = 100
end --if

local 1 vgsstep = (1 vgsstop - 1 vgsstart)/ (1 vgssteps - 1) --Vgs step size
local 1 vgssource val = 1 vgsstart --Source value during sweep
local 1 _vgs_iteration = 1 --Iteration variable

if (1_vdsstart == nil) then --Use default value
1 vdsstart = 0
end --if

if (1_vdsstart > 10) then --Coerce value
1 vdsstart = 10
end --if

A-44

APPENDIX A
Scripts

if (1_vdsstop == nil) then --Use default value
1 vdsstop = 10
end --if

if (1_vdsstop > 40) then --Coerce value
1 vdsstop = 40

end --if

if (1_vdssteps == nil) then --Use default value
1 vdssteps = 100

end --if

if (1_vdssteps > 2E+2) then --Coerce value
1 vdssteps = 2E+2
end --if

local 1 vdsstep = (1 vdsstop - 1 vdsstart)/ (1 _vdssteps - 1) --Voltage step size

local 1 _vdssource val = 1 vdsstart --Source value during sweep
local 1 vds iteration = 1 --Iteration variable

--Data tables

local 1 vgs data = {} --Create data table for sourced gate-source voltage

local 1 vds data = {} --Create data table for drain-source voltage

local 1 _id data = {} --Create data table for drain-source measured current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Drain-Source (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0

smua.source.limiti = 1_icmpl
smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Gate-Source (SMUB) source and measure settings
smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangei = smub.AUTORANGE ON --Enable measure autorange

A-45

APPENDIX A
Scripts

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output

--Execute sweep
for 1 vgs_iteration = 1, 1 vgssteps do

smub.source.levelv = 1 _vgssource_val

1 vds datall vgs iteration] = {} --Create new row in table
1 id data[l vgs_iteration] = {} --Create new row in table

1 vgs _data[l vgs iteration] = smub.measure.v() --Measure gate-source voltage

for 1 vds_iteration = 1,1 vdssteps do

if (1_vds_iteration == 1) then --Intialize start source value
1 vdssource val = 1 vdsstart
end --if

--delay (1)
1 vds data[l vgs iteration] [1 vds iteration] = smua.measure.v()
--Measure sourced voltage

1 id data[l vgs iteration] [1 vds iteration] = smua.measure.i()
--Measure current

1 vdssource val = 1 vdssource val + 1 vdsstep --Calculate new source
value

if (1_vds_iteration == 1 vdssteps) then --Reinitialize voltage value
after last iteration

1 vdssource val = 1 vdsstart
end --if
smua.source.levelv = 1 vdssource_val --Increment source
end --for

1 vgssource val = 1 _vgssource val + 1 vgsstep --Calculate new source value

end--for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level
smub.source.leveli = 0 --Return source to bias level

A-46

APPENDIX A
Scripts

Print Data(l vgssteps,l vdssteps, 1 vds data, 1 id data, 1 vgs data)

end--function FET Comm Source ()

function Print Data(vgssteps,vdssteps, vds data,id data, vgs_data)

--Print Data to output queue

--Local Variables
local 1 vgssteps = vgssteps
local 1 vdssteps = vdssteps

local 1 _vgs_iteration = 1 --Iteration variable
local 1 vds iteration = 1 --Iteration variable

local 1 vds data = vds_data
local 1 id data = id data
local 1 vgs data = vgs_data

for 1 vgs_iteration = 1, 1 vgssteps do
print (\\u)

print (“Gate-source Bias (V)”, 1 vgs datal[l vgs iteration])
print (“Drain-source Voltage (V)”,”Drain-source Current

for 1 vds_iteration = 1, 1 vdssteps

print (1 _vds data[l vgs iteration] [1 vds iteration], 1 id data[l vgs

iteration] [1 vds iteration])
end --for
end --for

end --function Print Data()

--FET Comm_Source ()

A-47

APPENDIX A
Scripts

Program 10. Transconductance

-- [

Transconductance () :
This program sources a voltage bias on a drain-source of a FET (VDS), sources a voltage on
the gate (VGS1l), and measures the drain-source current (ID1). Then, another source value

(VGS2) is sourced and the IDS2 is measured.

The transconductance (gfs) is then calculated by taking the change in Ids divided by the
change in VGS.

The drain-source voltage (VDS), Transconductance (gfs), gate-source voltage (VGS), and
drain-source current (ID) are returned.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-channel FET

Running this script creates functions that can be used to create a transconductance test
of FETs. The default values are for an N-channel SD210 FET.

The functions created are:
1. Transconductance (vgsstart, vgsstop, vgssteps, vdsbias)
--Default values vgsstart = 0V, vgsstop = 5V, vgssteps = 100, vdsbias =
10V
2. Check Comp ()
See detailed information listed in individual functions.
To run:
1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type Transconductance ()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.18.2007

function Transconductance (vgsstart, vgsstop, vgssteps, vdsbias)--Configure SMUA to source a
user-defined voltage on the

A-48

APPENDIX A
Scripts

--drain-source (Vds) while SMUB performs a fixed voltage bias (Vgs)on the gate-source and
the Ids is measured.
--SMUB then steps to the next base current and the Ic is measured.

--Returns measured Vds, Vgs, Id, gfs values are returned.

--Global variables
local 1 _icmpl = 100E-3 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgsstart = vgsstart --Vgs start voltage

local 1 vgsstop = vgsstop --Vgs sweep stop voltage
local 1 vgssteps = vgssteps --Number of steps in sweep

local 1 _vdsbias = vdsbias --Drain-source voltage

--Default values and level check

if (1_vgsstart == nil) then --Use default value
1 vgsstart = 0
end --if

if (1_vgsstart > 10) then --Coerce value
1 vgsstart = 10
end --if

if (1 _vgsstop == nil) then --Use default value
1 vgsstop = 5
end --if

if (1 _vgsstop > 10) then --Coerce value
1 vgsstop = 10

end --if

if (1 _vgssteps == nil) then --Use default value
1 vgssteps = 20

end --if

if (1_vgssteps > 100) then --Coerce value
1 vgssteps = 100
end --if

local 1 vgsstep = (1 vgsstop - 1 vgsstart)/ (1 _vgssteps - 1) --Vbe step size
local 1 vgssource val = 1 vgsstart --Source value during sweep

local 1 i = 1 --Iteration variable

if (1_vds bias == nil) then --Use default value
1 vds _bias = 10

A-49

APPENDIX A

Scripts

A-50

end --if

if (1_vds _bias > 10) then --Coerce value
1 vds_bias = 10
end --if

--Data tables

local 1 vgs = {} --Create data table for gate-source voltage
local 1 id = {} --Create data table for drain-source current
local 1 gfs = {} --Create data table for transconductance (gfs)

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0

smua.source.limiti = 1_icmpl

smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Base (SMUB) source and measure settings

smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output
smua.source.levelv = 1 vds bias

--Execute sweep
for 1 i = 1,1 vgssteps do

if (1_i == 1) then --Intialize start source value
1 vgssource val = 1 vgsstart

end --if

--delay (1)

APPENDIX A
Scripts

1 vgs[1l i] = smub.measure.v() --Measure Vgs
1 id[1_i] = smua.measure.i() --Measure Id

1 vgssource val = 1 _vgssource val + 1 vgsstep --Calculate new source value

if (1_i == 1 vgssteps) then --Reinitialize voltage value after last
iteration
1 vgssource val = 1 _vgsstart
end --if
smub.source.levelv = 1 vgssource val --Increment source
end --for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level
smub.source.levelv = 0 --Return source to bias level

Print Data(l vds bias, 1 vgssteps, 1 vgs, 1 id)
end--function Transconductance ()

function Print Data(vdsbias, vgssteps,vgs, id)
--Calculate Gfs value and print data to output queue

--Local Variables

local 1 vds_bias = vdsbias --Vds bias value

local 1 vgs steps = vgssteps --Number of steps in Vgs sweep
local 1 vgs = vgs --Gate-source Voltage data

local 1 _id = id --Drain-source current data

local 1 gfs = {} --Table for Transconductance calculations
local 1 i = 1 --Iteration variable

--Calculate gfs values and populate table
for 1 i = 1,1 vgs_steps do

if (1 i ~= 1) then --If not the first iteration, calculate gfs
1 gfs[l i] = (1 _id[l i] - 1 id[1 i - 1])/(1 _vgs[l i] - 1 vgs[l i - 1])
--gfs = dId/dvgs
end--1if
end --for

1 i =1 --Reinitialize Vgs iteration variable

A-51

APPENDIX A
Scripts

print (\\u)
print (“vds”, 1 vds bias)
print (“Vgs (V)”,”Id (A)","gfs (s)")

for 1 1 = 2, 1 vgs _steps do
print (1 _vgs[l i],1 id[1 il, 1 gfs[1 i])
end --for
end --function Print Data()
--Transconductance ()
Program 11. Threshold
Program 11A. Threshold (Search)

-- [
FET Thres_ Search() :

This program performs a binary search on the gate-source voltage (VGS) of an FET at a fixed
drain-source voltage (VDS) and searches for a target drain-source current (ID). If the
specified Id is found within the maximum number of iterations, the threshold voltage (VTH)
and drain-source (ID) currents are measured and printed.

If the maximum number of iterations are reached, the program is aborted.
Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-Channel FET

Running this script creates functions that can be used to create a threshold search of
FETs. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. FET Thres Search(vdssource, lowvgs, highvgs, targetid)
--Default values vdssource = 1V, lowvgs = 0.5, highvgs = 2, targetid =
le-6A
2. Check_ Comp ()

See detailed information listed in individual functions.
To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type FET Thres Search()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

A-52

APPENDIX A
Scripts

Revl: JAC 6.26.2007

function FET Thres Search(vdssource, lowvgs, highvgs, targetid) --Configure SMUA to source
a user-defined voltage on

--the drain-source (Vds) while SMUB sources a voltage on --the gate-source (Vgs). VGS is
varied using a binary

--search algorithm between a maximum and minimum Vgs value, and the drain-source current
(Id) is measured.

--If measured value is outside the tolerance, search is performed again until the value
falls within the

--specified range or the iteration limit is reached.

--Returns measured Vds, Vth, and Id.

local 1 _k --binary search loop count variable

local 1 _k max = 20 --Maximum loop counts

local 1 vds_source = vdssource --vdssource value

local 1 high vgs = highvgs --Start Ib high limit

local 1 low vgs = lowvgs --Start Ib lo limit

local 1 target id = targetid --Target Ic for binary search
local 1 nplc =1

local 1 vgs source = 0--Gate-sourced voltage
local 1_id meas --Drain-source measured voltage

--Default values and level check

if (1_vds_source == nil) then --Use default value
1 vds _source = 0.5

end --if

if (1_low vgs == nil) then --Use default value
1 low vgs = 0.5

end --if

if (1_high vgs == nil) then --Use default value
1 high vgs = 1.1
end --if

if (1_target_id == nil) then --Use default value
1 target_id = le-6

end --if
smua.reset () --Reset SMU
smub.reset () --Reset SMU

A-53

APPENDIX A

Scripts

smua
smub

smua.
smua.

errorqueue.clear ()

smua.source.limiti =

smua

--Clear the error queue

.measure.nplc = 1 nplc --Measurement integration rate
.measure.nplc = 1 nplc --Measurement integration rate

source.func = smua.OUTPUT_DCVOLTS
source.autorangev = smua.AUTORANGE ON --Enable source autorange

(100 * 1 target_id) --Set compliance value

.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange

smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.limiti = 1 _high vgs

smub.source.limitv = 6

smub

--Start test
smua.source.levelv = 1 vds source --Set source level
smub.source.levelv =

.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

0 --Set source level

smua.source.output = smua.OUTPUT ON --Enable output
smub.source.output = smub.OUTPUT ON --Enable output

delay(0.001) --Delay

1 comp val = Check Comp() --check compliance

if 1 comp val == true

smua.source.output
smub.source.output

smua.source.levelv
smub.source.levelv

else

value

A-54

then --If unit is in compliance, end

smua.OUTPUT_OFF --Disable output
= smub.OUTPUT OFF --Disable output

0 --Return source to 0
= 0 --Return source to 0

--Search for the right base current

repeat --Repeat search until measured Ic is within 5% of target, or iteration
maximum reached, or compliance.

1k=1k+

1 vgs_source
(Binary Search)

smub.source.

delay(0.01)

1 --Increment
= ((1_high vgs-1 low vgs)/2) + 1 low vgs --Determine source

levelv = 1_vgs_source --Program new source value
--Source delay

APPENDIX A
Scripts

1 comp val = Check Comp() --check compliance

if 1 comp val == true then --If unit is in compliance, end
smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv = 0 --Return source to 0
smub.source.levelv = 0 --Return source to 0

else
1 id meas = smua.measure.i() --Measure Id
if (1_target_id < 1_id meas) then --Compare measurement with
target value
1 high vgs = 1 _vgs_source
else

1 low vgs = 1 _vgs_source
end --end if
end --ifelse

if 1 id meas == nil then --If no measurement taken, initialize to 0 to avoid
arithmatic error
--in until statement below
1 id meas = 0
end --if

until ((math.abs(l id meas - 1 target id) < (0.05*1 target id))or(l _k>1 k max))
or(l_comp val == true) --

--iteration limit reached
if (1 k > 1 k max) then
print (“Iteration Limit Reached!!”)
end --end if

smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

print (“*Id Data:”, 1_id meas) --Print Id data
print (“Vgs Data:”, 1 vgs source) --Print Vgs
print (“Vds Data:”,1 vds source) --Print Vds
end --ifelse
end--function FET Thres Search()
function Check Comp() --Function checks state of compliance, if true, prints warning and

returns
--to run test()

A-55

APPENDIX A
Scripts

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)
end --if

return 1 _comp val
end --function Check Comp ()

--FET Thres_Search()

Program 11B. Threshold (Fast)

-- [
FET Thres Fast()

This program applies a bias to the drain-source of an FET (VDS) and sweeps current on the
drain-source (ID) and the threshold voltage (VTH) at each ID value is measured.

*NOTE: Due to connection scheme, negative values are to be programmed for the sourced
values. The absolute value of the measurements and sourced values are printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-channel FET

Running this script creates functions that can be used to measure the threshold of FETs.
The default values are for an N-channel FET type SD210.

The functions created are:
1. FET Thres Fast (vdssource, istart, istop, isteps)
--Default values vdssource = 0.5V, istart = 0.5uA, istop = 1uA, isteps =
10
2. Print Data(isteps, drain curr, thres volt)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type FET Thres Fast ()

2) From an external program

A-56

APPENDIX A

Scripts
- Send the entire program text as a string using standard GPIB Write calls.
Revl: JAC 6.26.2007
11--
—————————————————— Keithley TSP Function ------------------
function FET Thres Fast (vdssource, istart, istop, isteps) --Configure SMUB to source a bias

current

--on the drain-source (Id) and SMUA performs a voltage sweep on the drain-source (Vds)
from start to

--stop in a user-defined number of steps.

--Returns Vth, Vds, and Id values.

--Global variables
local 1 irange = 100e-6 --Drain current source range
local 1 _vcmpl = 11 --Drain source compliance

local 1 vrange = 40 --Drain-source voltage source range
local 1 _icmpl = 100e-3 --Drain source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 istart = istart --Drain sweep start current
local 1 istop = 1istop --Drain sweep stop current
local 1 isteps = isteps --Number of steps in sweep

local 1 vds_source = vdssource --Vds source value

--Default values and level check

if (1_vds_source == nil) then --Use default value
1 vds_source = -0.5
end --if

if (1_vds_source > 0) then --Coerce value

1 vds source = -1 vds_source

end --if

if (1_istart == nil) then --Use default value
1 istart = -500e-9

end --if

if (1_istart > 0) then --Coerce value

1 istart = -1 _istart
end --if
if (1_istop == nil) then --Use default value

A-57

APPENDIX A
Scripts

1 istop = -le-6
end --if

if (1_istop > 0) then --Coerce value
1 istop = -i _stop

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 10

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100
end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size
local 1 _isource val = 1 istart --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables
local 1 _thres volt
local 1 _drain_curr

{} --Create data table for threshold voltage
{} --Create data table for emitter current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure emitter current (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0

smua.source.limiti = 1 _icmpl

smua.sense = smua.SENSE REMOTE --Enable Remote (4-wire) sensing
smua.source.output = smua.OUTPUT ON --Enable Output

--Configure collector/emitter (SMUB) source and measure settings
smub.source.func = smub.OUTPUT DCAMPS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorang
smub.source.levelv = 0

smub.source.limitv = 1_vcmpl

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output

smua.source.levelv = 1 vds source --Program source

A-58

APPENDIX A
Scripts

--Execute sweep
for 1 i =1, 1 isteps do

smub.source.leveli = 1 isource val
delay(0.01)
1 thres volt[l i] = smub.measure.v() --Measure threshold voltage (Vt)

smua.measure.i() --Measure drain current

1 drain curr[l i]
1 isource val = 1 isource val + 1 _istep --Calculate new source value
end--for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level

smub.source.leveli = 0 --Return source to bias level

Print Data(l isteps, 1 drain curr, 1 thres volt, 1 vds source)
end--function DC Gain Fast ()

function Print Data(isteps, drain curr, thres volt, vdssource)
--Print Data to output queue

--Local Variables

local 1 isteps = isteps

local 1 i = 1 --Iteration variable

local 1 drain curr = drain curr --Drain current table

local 1 thres volt = thres volt --Threshold voltage table
local 1 _vds_source = vdssource --Drain-source voltage value

print (™)
print (“Drain-source Voltage (V)”)

print (math.abs (1 _vds source))

print (\\II)
print (“Threshold Voltage (V)”, “Drain Current (A)")

for 1 i =1, 1 isteps do
print (math.abs (1 _thres volt[l i]), math.abs(l drain curr[l i]))
end --for

end --function Print Data()
--FET Thres Fast()

A-59

APPENDIX A
Scripts

Section 5. Using Substrate Bias

Program 12. Substrate Current vs. Gate-Source Voltage (FET I vs. V)

-- 1
FET Isb Vgs():

This program applies a voltage bias on the drain-source (VDS), a voltage bias on the
substrate-source (VSB) of an FET, then sweeps the gate-source voltage (VGS) from a user-
defined stop, through a defined number of steps.

At each point, the VGS, ID, and ISB are measured and the data is printed.
Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument

(1) Keithley Model 2636 System Sourcemeter instrument (Required for low current
measurement)

(1) Crossover Ethernet Cable

(1) SD210 N-channel FET

- Connect the single-channel SourceMeter instrument to the dual-channel master using a
crossover Ethernet cable.

- Connect the test fixture to both units using appropriate cables.

- Turn on the SourceMeter instruments and allow the units to warm up for two hours for
rated accuracy.

Configure the TSP-Link communications for each instrument:

Slave: A single-channel instrument such as the Model 2601, 2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602, 2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the Master and press ENTER.

6. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

A-60

APPENDIX A

Scripts

Running this script creates functions that can be used to measure the Isb v. Vgs
characteristics of FETs.

The functions created are:
1. FET Isb Vgs(vdssource, vsbsource,vgsstart,vgsstop, vgssteps) --Default values vdssource
= 1V,
--vgsstart = 0V,vgsstop = 10V, vgssteps = 10

2. Print Data(l vgs steps, 1 id curr, 1 vgs volt,l isb curr)

See detailed information listed in individual functions.
To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type FET Isb Vgs()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.
Revl: JAC 5.22.2007
11--
—————————————————— Keithley TSP Function ------------------
function FET Isb Vgs(vdssource, vsbsource,vgsstart,vgsstop, vgssteps) --Configure node 1

SMUA to source drain-source

--voltage (Vds), node 2 SMUA to apply a voltage bias on the substrate-source (Vsb)and
perform a voltage sweep from

--start to stop in user-defined steps using node 1 SMUB on the gate-source (Vgs). At each
point, Vgs and Isb are

--measured and printed.

--Global variables

local 1 _vds_source = vdssource --Drain-source source voltage
local 1 _vsb_source = vsbsource --Substrate-source bias voltage
local 1 icmpl = 100E-3 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgs start = vgsstart --Gate-source sweep start voltage
local 1 vgs stop = vgsstop --Gate-source sweep stop voltage
local 1 vgs_steps = vgssteps --Number of steps in sweep

--Default values and level check
if (1_vds_source == nil) then --Use default value

A-61

APPENDIX A
Scripts

1 vds source =1
end --if

if (1_vds_source > 1) then --Coerce value
1 vds source =1

end --if

if (1_vsb_source == nil) then --Use default value
1 vsb_source = -1

end --if

if (1_vsb_source > 0) then --Coerce value
1 vsb_source = -1
end --if

if (1_vgs_start == nil) then --Use default value
1 vgs_start = 0
end --if

if (1_vgs_start > 10) then --Coerce value
1 vgs _start = 10

end --if

if (1_vgs_stop == nil) then --Use default value
1 vgs _stop = 10

end --if

if (1_vgs_stop > 10) then --Coerce value
1 vgs _stop = 10

end --if

if (1_vgs_steps == nil) then --Use default value
1 vgs _steps = 10

end --if

if (1_vgs_steps > 1E3) then --Coerce value
1 vgs _steps = 1E3
end --if

local 1 step = (1 _vgs stop - 1 vgs start)/ (1 vgs steps - 1) --Current step size
local 1 source val = 1 vgs start --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables

local 1 isb curr = {} --Create data table for substrate-source current

local 1 id curr = {} --Create data table for drain-source current

local 1 vgs volt = {} --Create data table for gate-substrate voltage
local 1 vds volt = {} --Create data table for drain-substrate voltage

node[1] .smua.reset () --Reset SMU

A-62

APPENDIX A
Scripts

node[1] .smub.reset () --Reset SMU
node [2] .smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure drain-source SMU (TSP-Link Node[l] SMUA) source and measure settings

node [1]
node [1]
autorange
node [1]
node [1]
node [1]
autorange

node [1]

.smua.source.func = node[1].smua.OUTPUT_ DCVOLTS
.smua.source.autorangev = node[1l].smua.AUTORANGE ON --Enable source

.smua.source.levelv = 1 _vds_source

.smua.source.limiti = 1 icmpl
.smua.measure.autorangev = node [1].smua.AUTORANGE ON --Enable measure

.smua.measure.nplc = 1 nplc --Measurement integration rate

--Configure gate-source SMU (TSP-Link Node[l] SMUB) source and measure settings

node [1]
node [1]
autorange
node [1]
node [1]
node [1]

node [1]

.smub.source.func = node[1].smub.OUTPUT_ DCVOLTS
.smub.source.autorangev = node[1].smub.AUTORANGE ON --Enable source

.smub.source.levelv = 1 _vds_source
.smub.source.limiti = 1 icmpl

.smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

.smub.measure.nplc = 1 nplc --Measurement integration rate

--Configure substrate-source SMU (TSP-Link Node[2] SMUA) source and measure settings

node [2]
node [2]
autorange
node [2]
node [2]
node [2]
autorange

node [2]
node [1]

node [1]
node [2]

.smua.source.func = node[2].smua.OUTPUT_DCVOLTS
.smua.source.autorangev = node[2].smua.AUTORANGE ON --Enable source

.smua.source.levelv = 1 _vsb_source
.smua.source.limiti = 1 icmpl
.smua.measure.autorangev = node [2].smua.AUTORANGE ON --Enable measure

.smua.measure.nplc = 1 nplc --Measurement integration rate
.smua.source.output = smua.OUTPUT _ON --Enable Output

.smub.source.output = smub.OUTPUT _ON --Enable Output
.smua.source.output smua.OUTPUT ON --Enable Output

--Execute sweep
for 1 1 =1, 1 vgs steps do

current

--smua.source.leveli = 1 source val
delay(0.010) --Delay

1 id curr[l_i] = node[l].smua.measure.i() --Measure drain-source current
1 vgs_volt[l_i] = node([1l].smub.measure.v() --Measure gate-source voltage
1 isb curr[l_i] = nodel[2].smua.measure.i() --Measure substrate-source

A-63

APPENDIX A

Scripts
1 source _val = 1 _source val + 1 _step --Calculate new source value
node [1] .smub.source.levelv = 1 source val --Increment source
end--for

node[1] .smua.source.output node [1] .smua.OUTPUT OFF --Disable output
node [1] .smub.source.output = node[1].smub.OUTPUT OFF --Disable output
node [2] . smua.source.output node [2] .smua.OUTPUT OFF --Disable output

Print Data(l vgs steps, 1 id curr, 1 vgs volt,l isb curr)
end--function Diode Fwd Chr ()

function Print Data(vgssteps,idcurr,vgsvolt, isbcurr)
--Print Data to output queue

--Local Variables

local 1 vgs steps = vgssteps
local 1 id curr = idcurr
local 1 _vgs_volt = vgsvolt

local 1 isb curr = isbcurr

print (*Drain-source current (A):”, “Gate-source voltage(V):”, “Substrate-source
current (A) : ")

for 1 1 =1, 1 vgs steps do
print (1 _id curr([l i], 1 vgs volt[l i], 1 isb curr[l i])
end

end --function Print Data()

--FET Isb Vgs()

Program 13. Common-Source Characteristics with Substrate Bias

-- [
FET Comm Source Vsb():

This program applies a bias to the substrate-source of an FET (VSB) and a staircase sweep
on the gate-source voltage (VGS). At each VGS value, the drain-source voltage (VDS) is
also swept linearly.

At each point, the VDS and IDS are measured and printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument

A-64

APPENDIX A
Scripts

(1) Keithley Model 2636 System Sourcemeter instrument (Required for low current
measurement)

(1) Crossover Ethernet Cable

(1) SD210 N-Channel MOSFET

- Connect the single-channel SourceMeter instrument to the dual-channel master using a
crossover Ethernet cable.

- Connect the test fixture to both units using appropriate cables.

- Turn on the SourceMeter instrument and allow the unit to warm up for two hours for rated
accuracy.

Configure the TSP-Link communications for each instrument:

Slave: A single-channel instrument such as the Model 2601, 2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602, 2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the Master and press ENTER.

6. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

Running this script creates functions that can be used to measure the common source
characteristics of an N-channel MOSFET with substrate bias. The default values are for an
N-channel MOSFET type SD210.

The functions created are:
1. FET Comm Source Vsb(vgsstart, vgsstop, vgssteps, vdsstart, vdsstop,
vdssteps, vsbsource)
--Default values vgsstart = 0, vgsstop = 10V, vgssteps = 5, vdstart = 0V,
vdstop = 10V,
--vdsteps = 100, vsbsource = -1V
2. Print Data(vgssteps,vdssteps, vds data,Id data, vgs data, vsbsource)

See detailed information listed in individual functions.

1) From Test Script Builder

A-65

APPENDIX A
Scripts

- At the TSP> p rompt in the Instrument Control Panel, type FET Comm Source Vsb()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.18.2007

11--

--TODO: Update Node info

function FET Comm Source Vsb (vgsstart, vgsstop, vgssteps, vdsstart, vdsstop, vdssteps,
vsbsource)

--Configure node 1 SMUB to source a bias voltage on the gate-source (Vgs), node 1 SMUA
performs a voltage

--sweep on the drain-source Vds) from start to stop in a user-defined number of steps, and
node 2 SMUA is

--used to bias the substrate (Vsb). Node 1 SMUB then increments to next bias value and
continues to stop

--value.

--Returns measured Vgs, Vds, Vsb, and Id values.

--Global variables
local 1 vrange = 40 --
local 1 icmpl = 100E-3 --

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgsstart = vgsstart --Gate-source sweep start voltage
local 1 vgsstop = vgsstop --Gate-source sweep stop voltage
local 1 vgssteps = vgssteps --Number of steps in sweep

local 1 vdsstart = vdsstart --Drain-source sweep start voltage
local 1 vdsstop = vdsstop --Drain-source sweep stop voltage
local 1 vdssteps = vdssteps --Number of steps in sweep

local 1 _vsbsource = vsbsource --Substrate bias value

--Default values and level check

if (1_vgsstart == nil) then --Use default value
1 vgsstart = 0
end --if

if (1_vgsstart > 10) then --Coerce value
1 vgsstart = 10

A-66

APPENDIX A
Scripts

end --if

if (1 _vgsstop == nil) then --Use default value
1 vgsstop = 10
end --if

if (1 _vgsstop > 10) then --Coerce value
1 vgsstop = 10
end --if

if (1 _vgssteps == nil) then --Use default value
1 vgssteps = 5
end --if

if (1_vgssteps > 100) then --Coerce value
1 vgssteps = 100
end --if

local 1 vgsstep = (1 vgsstop - 1 vgsstart)/ (1 vgssteps - 1) --Vgs step size
local 1 vgssource val = 1 vgsstart --Source value during sweep
local 1 _vgs_iteration = 1 --Iteration variable

if (1_vdsstart == nil) then --Use default value
1 vdsstart = 0
end --if

if (1_vdsstart > 10) then --Coerce value
1 vdsstart = 10
end --if

if (1_vdsstop == nil) then --Use default value
1 vdsstop = 10
end --if

if (1_vdsstop > 40) then --Coerce value
1 vdsstop = 40
end --if

if (1_vdssteps == nil) then --Use default value
1 vdssteps = 100
end --if

if (1_vdssteps > 2E+2) then --Coerce value
1 vdssteps = 2E+2
end --if

local 1 vdsstep = (1 vdsstop - 1 vdsstart)/ (1 _vdssteps - 1) --Voltage step size

local 1 _vdssource val = 1 vdsstart --Source value during sweep
local 1 vds iteration = 1 --Iteration variable

A-67

APPENDIX A

Scripts
if (1_vsbsource == nil) then --Use default value
1 vsbsource = -1
end --if
if (1_vsbsource > 0) then --Coerce value
1 vsbsource = -1_vsbsource
end --if
if (1_vsbsource < -40) then --Coerce value
1 vsbsource = -40
end --if
--Data tables
local 1 vgs data = {} --Create data table for sourced gate-source voltage
local 1 vds data = {} --Create data table for drain-source voltage
local 1 _id data = {} --Create data table for drain-source measured current
node [1] .smua.reset () --Reset SMU
node [1] .smub.reset () --Reset SMU
node [2] .smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue
--Configure Drain-Source (node [1] SMUA) source and measure settings
node [1] .smua.source.func = node[1].smua.OUTPUT_ DCVOLTS
node [1] .smua.source.autorangev = node[1].smua.AUTORANGE ON --Enable source
autorange
node [1] .smua.source.levelv = 0
node [1] .smua.source.limiti = 1 _icmpl
node [1] .smua.measure.autorangei = node[1].smua.AUTORANGE ON --Enable measure
autorange
node [1] .smua.measure.autozero = node[1] .smua.AUTOZERO AUTO
node [1] .smua.measure.nplc = 1 nplc --Measurement integration rate
node [1] .smua.source.output = node[1].smua.OUTPUT ON --Enable Output
--Configure Gate-Source (node [1] SMUB) source and measure settings
node [1] .smub.source.func = node[1].smub.OUTPUT DCVOLTS
node [1] .smub.source.autorangev = node[1].smub.AUTORANGE ON --Enable source
autorange
node [1] .smub.source.levelv = 0
node [1] .smub.source.limiti = 1 _icmpl
node [1] .smub.measure.autorangei = node[1].smub.AUTORANGE ON --Enable measure
autorange

node [1] .smub.measure.autozero = node[1] .smub.AUTOZERO AUTO
node [1] .smub.measure.nplc = 1 nplc --Measurement integration rate
node [1] .smub.source.output = node[1].smub.OUTPUT ON --Enable Output

A-68

APPENDIX A

Scripts
--Configure Substrate (node [2] SMUA) source and measure settings
node [2] .smua.source.func = node[2] .smua.OUTPUT_ DCVOLTS
node [2] .smua.source.autorangev = node [2] .smua.AUTORANGE ON --Enable source
autorange
node [2] .smua.source.levelv = 0
node [2] .smua.source.limiti = 1 _icmpl
node [2] . smua.measure.autorangei = node[2].smua.AUTORANGE ON --Enable measure
autorange
node [2] . smua.measure.autozero = node[2] .smua.AUTOZERO AUTO
node [2] .smua.measure.nplc = 1 nplc --Measurement integration rate
node [2] .smua.source.output = node[2].smua.OUTPUT ON --Enable Output
--Enable Substrate Bias (node [2] SMUR)
node [2] .smua.source.levelv = 1 vsbsource
--Execute sweep
for 1 vgs iteration = 1, 1 vgssteps do
node [1] .smub.source.levelv = 1 _vgssource val
1 vds datall vgs iteration] = {} --Create new row in table
1 id data[l vgs_iteration] = {} --Create new row in table
1 vgs_datall_vgs_iteration] = node[l].smub.measure.v() --Measure gate-source
voltage
for 1 vds_iteration = 1,1 vdssteps do
if (1_vds_iteration == 1) then --Intialize start source value
1 vdssource val = 1 vdsstart
end --if
--delay (1)
1 vds_datall_vgs_iteration] [1_vds_iteration] = node[l].smua.
measure.v ()
--Measure sourced voltage
1 id data[l_vgs_iteration] [1_vds_iteration] = node[1l].smua.measure.i()

--Measure current
1 vdssource val = 1 vdssource val + 1 vdsstep --Calculate new source

value
if (1_vds_iteration == 1 vdssteps) then --Reinitialize voltage value
after last
--iteration
1 vdssource val = 1 vdsstart
end --if

A-69

APPENDIX A
Scripts

node [1] .smua.source.levelv = 1 vdssource val --Increment source
end --for

1 vgssource val = 1 vgssource val + 1 vgsstep --Calculate new source value

end--for

node [1] .smua.source.output = node[1l].smua.OUTPUT OFF --Disable output
node [1] .smub.source.output = node[1].smub.OUTPUT OFF --Disable output
node [2] .smua.source.output = node[2].smua.OUTPUT OFF --Disable output

node[1] .smua.source.levelv = 0 --Return source to bias level
node [1] .smub.source.leveli = 0 --Return source to bias level
node [2] .smua.source.levelv = 0 --Return source to bias level

Print Data(l vgssteps,l vdssteps, 1 vds data, 1 id data, 1 vgs data, 1 vsbsource)
end--function FET Comm Source Vsb()

function Print Data(vgssteps,vdssteps, vds data,id data, vgs data, vsbsource)
--Print Data to output queue

--Local Variables

local 1 vgssteps = vgssteps

local 1 vdssteps = vdssteps

local 1 _vgs_iteration = 1 --Iteration variable
local 1 vds iteration = 1 --Iteration variable
local 1 vds data = vds_data

local 1 _id data = id_data

local 1 vgs data = vgs_data

local 1 vsbsource = vsbsource

for 1 vgs_iteration = 1, 1 vgssteps do

print (™)

print (“Substrate Bias (V)”, 1 vsbsource)

print (“Gate-source Bias (V)”, 1 vgs datal[l vgs iteration])
print (*Drain-source Voltage (V)”,”Drain-source Current (A)")

for 1 vds_iteration = 1, 1 vdssteps do
print (1 _vds data[l vgs iteration] [1 vds iteration], 1 id data[l vgs
iteration] [1 vds iteration])
end --for
end --for

end --function Print Data()

--FET Comm_Source Vsb()

A-70

APPENDIX A
Scripts

Program 14. Common-Emitter Characteristics with Substrate Bias

-- [
BJT Comm Emit Vsb(): USES TABLES

This program applies a bias to the base of a BJT (IB), a bias to the substrate (VSB), and
sweeps voltage on the collector/emitter (VCE).
The VCE, IB, and IC are then printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument

(1) Keithley Model 2636 System Sourcemeter instrument (Required for low current
measurement)

(1) Crossover Ethernet Cable

(1) 2N5089 NPN Transistor or equivalent with substrate bias

- Connect the single-channel SourceMeter instrument to the dual-channel master using a
crossover Ethernet cable.

- Connect the test fixture to both units using appropriate cables.

- Turn on the SourceMeter instruments and allow the unit to warm up for two hours for
rated accuracy.

Configure the TSP-Link communications for each instrument:

Slave: A single-channel instrument such as the Model 2601, 2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602, 2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the Master and press ENTER.

6. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

Running this script creates functions that can be used to measure the common emitter
characteristics of transistors. The default values are for an NPN transistor type 2N5089.

A-71

APPENDIX A
Scripts

The functions created are:
1. BJT Comm Emit Vsb(istart, istop, isteps, vstart, vstop, vsteps,vsbsource)
--Default values istart = 10uA, istop = 50uA, isteps = 5, vstart = 0V, vstop = 10V,
--vsteps =100, vsbsource v
2. Print Data(isteps,vsteps, ce volt,ce curr, base curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type BJT Comm Emit Vsb()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 7.23.2007

function BJT Comm Emit Vsb(istart, istop, isteps, vstart, vstop, vsteps, vsbsource)
--Configure node 1 SMUB to source a --bias current on the base and node 1 SMUA performs a
voltage sweep on the Collector//Emitter from start to stop in a --user-defined number of
steps.
--Node 2 SMUA delivers a user-defined voltage bias to the substrate. Node 1 SMUB then
increments to next bias value
--and continues to stop value.

--Returns measured voltage and current
values.

--Global variables
local 1 irange = 100E-6 --Base current source range

local 1 _vcmpl = 1 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100E-3 --Collector-emitter source compliance

local 1 _vsbsource = vsbsource --Substrate bias value

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables
local 1 _istart = istart --Base sweep start current
local 1 istop = 1istop --Base sweep stop current

local 1 isteps = isteps --Number of steps in sweep

local 1 vstart = vstart --Collector-emitter sweep start voltage

A-72

APPENDIX A
Scripts

local 1 vstop = vstop --Collector-emitter sweep stop voltage
local 1 vsteps = vsteps --Number of steps in sweep

--Default values and level check

if (1_istart == nil) then --Use default value
1 istart = 10E-6
end --if

if (1_istart > 100E-6) then --Coerce value
1 istart = 100E-6
end --if

if (1_istop == nil) then --Use default value
1l istop = 50E-6
end --if

if (1_istop > 500E-6) then --Coerce value
1 istop = 500E-6

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 5

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100
end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size

local 1 _isource val = 1 _istart --Source value during sweep
local 1 i = 1 --Iteration variable

if (1_vstart == nil) then --Use default value
1 vstart = 0
end --if

if (1_vstart > 100E-3) then --Coerce value
1 vstart = 100E-3
end --if

if (1_vstop == nil) then --Use default value
1 vstop = 10
end --if

if (1_vstop > 40) then --Coerce value
1 vstop = 40
end --if

if (1_vsteps == nil) then --Use default value
1 vsteps = 100

A-73

APPENDIX A
Scripts

end --if

if (1_vsteps > 2E+2) then --Coerce value
1 vsteps = 2E+2
end --if

local 1 vstep = (1 vstop - 1 vstart)/ (1 vsteps - 1) --Voltage step size
local 1 _vsource val = 1 vstart --Source value during sweep
local 1 v = 1 --Iteration variable

if (1_vsbsource == nil) then --Use default value
1 vsbsource = 1
end --if

if (1_vsbsource > 40) then --Coerce value
1 _vsbsource = 40
end --if

--Data tables

local 1 base curr = {} --Create data table for sourced current

local 1 ce volt = {} --Create data table for collector-emitter measured voltage
local 1 ce curr = {} --Create data table for collector-emitter measured current

node[1] .smua.reset () --Reset SMU
node[1] .smub.reset () --Reset SMU
node [2] .smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (Node 1 SMUA) source and measure settings

node [1] .smua.source.func = node[1].smua.OUTPUT_ DCVOLTS

node [1] .smua.source.autorangev = node[1].smua.AUTORANGE ON --Enable source
autorange

node [1] .smua.source.levelv = 0

node [1] .smua.source.limiti = 1 _icmpl

node [1] .smua.measure.autorangei = node[1l].smua.AUTORANGE ON --Enable measure
autorange

node [1] .smua.measure.autozero = node[1] .smua.AUTOZERO AUTO
node [1] .smua.measure.nplc = 1 nplc --Measurement integration rate

node [1] .smua.source.output = node[1].smua.OUTPUT ON --Enable Output

--Configure Base (Node 1 SMUB) source and measure settings

node [1] .smub.source.func = node[1].smub.OUTPUT_ DCAMPS

node [1] .smub.source.autorangei = node[1].smub.AUTORANGE ON --Enable source
autorange

node [1] .smub.source.leveli = 0

node [1] .smub.source.limitv = 1_vcmpl

A-74

APPENDIX A
Scripts

node [1]
autorange

node [1]
node [1]

node [1]

. smub

. smub
. smub

. smub

.measure.autorangev = node[1].smub.AUTORANGE ON --Enable measure

.measure.autozero = node[1].smub.AUTOZERO AUTO
.measure.nplc = 1 nplc --Measurement integration rate

.source.output = node[1l].smub.OUTPUT ON --Enable Output

--Configure Substrate Bias (Node 2 SMUA) source settings

node [2]
node [2]
autorange
node [2]
node [2]

autorange

node [2] .

node [2]

node [2]

. sSmua
. sSmua

. sSmua

.smua.
node [2] .

smua

smua
. sSmua

. sSmua

.source.func = node[2].smua.OUTPUT_DCVOLTS
.source.autorangev = node[2] .smua.AUTORANGE ON --Enable source

.source.levelv = 0
source.limiti = 1 icmpl
.measure.autorangei = node[2].smua.AUTORANGE ON --Enable measure

.measure.autozero = node[2] .smua.AUTOZERO AUTO
.measure.nplc = 1 nplc --Measurement integration rate

.source.output = node[2].smua.OUTPUT ON --Enable Output

--Execute sweep
for 1 i =1, 1 isteps do

voltage

iteration

node [2] .smua.source.levelv = 1 vsbsource
node [1] .smub.source.leveli = 1 isource_val

1 ce volt[1l i]
1 ce curr(l i]

{} --Create new row in table
{} --Create new row in table

1 base curr[l i] = node[1l].smub.measure.i() --Measure base current

for 1 v = 1,1 _vsteps do

if (1_v == 1) then --Intialize start source value
1 vsource val = 1 _vstart
end --if
--delay (1)
1 ce volt[1l i][1 v] = node[l].smua.measure.v() --Measure sourced
1 ce curr[l i][1 v] = node[l].smua.measure.i() --Measure current

1 vsource val = 1 vsource val + 1 _vstep --Calculate new source value

if (1_v == 1 _vsteps) then --Reinitialize voltage value after last

A-75

APPENDIX A
Scripts

1 vsource val = 1 _vstart
end --if

node [1] .smua.source.levelv = 1 vsource val --Increment source
end --for
1 isource val = 1 isource val + 1 _istep --Calculate new source value
end--for

node [1] .smua.source.output = node[1l].smua.OUTPUT OFF --Disable output
node [1] .smub.source.output = node[1].smub.OUTPUT OFF --Disable output
node [2] .smua.source.output = node[2].smua.OUTPUT OFF --Disable output

node[1] .smua.source.levelv = 0 --Return source to bias level
node [1] .smub.source.leveli = 0 --Return source to bias level
node [2] .smua.source.levelv = 0 --Return source to bias level

Print Data(l isteps,l vsteps, 1 ce volt, 1 ce curr, 1 base curr,l vsbsource)
end--function BJT Comm_ Emit ()

function Print Data(isteps,vsteps, ce volt,ce curr, base curr, vsbsource)
--Print Data to output queue

--Local Variables

local 1 isteps = isteps

local 1 vsteps = vsteps

local 1 i = 1 --Iteration variable
local 1 v = 1 --Iteration variable
local 1 _ce volt = ce_volt

local 1 ce curr = ce_curr

local 1 base curr = base curr
local 1 vsbsource = vsbsource

for 1 i =1, 1 isteps do

print (™)

print (“Base Current Bias (A)”, 1 base curr[l i])
print (“Substrate Bias (V)”, 1 vsbsource)

print (*Emitter Voltage (V)”,”Emitter Current (A)”")

for 1 v = 1, 1 vsteps do
print (1 _ce volt[1l i][1 v], 1 ce curr[l i]([1 vI])
end --for
end --for

end --function Print Data()

A-76

APPENDIX A
Scripts

--BJT Comm Emit Vsb()

AT7

APPENDIX A
Scripts

Section 6. High Power Tests

Program 15. High Current with Voltage Measurement

-- [
KI2602Example High Current.tsp

This program is intended to perform the following:

1. Set up both SMUs of a Model 2602 for current bias and measure voltage on specific
intervals.

2. Deliver up to 2A @ 40V (1A @ 40V per SMU) by wiring each SMU in parallel

Wiring: SMUA Hi to SMUB Hi, SMUA Lo to SMUB Lo

WARNING: If either SMU reaches a compliance state, the instrument, device, or both
could be damaged.

System Requirements: 260x Firmware version: 1.0.2 or newer

Revl: JAC 3.21.2006
Rev2: JAC 10.15.2007

-Change 1 sourcei value to sourcei/2. Desired current value at DUT is now
programmed.

--11]
function RunHighCurrent (sourcei, points)

local 1 sourcei = sourcei/2 --Local variable for Source Current Value
local 1 points = points --Local variable for number of points to sample
local 1 cmpl = 40 --compliance must not be reached!

--Configure display
display.clear ()
display.screen = display.SMUA SMUB

display.smua.measure.func = display.MEASURE DCVOLTS
display.smub.measure.func = display.MEASURE DCVOLTS

-- Configure source and measure settings.
smua.source.output = smua.OUTPUT OFF --Disable Output
smub.source.output = smub.OUTPUT OFF --Disable Output

smua.source.func = smua.OUTPUT DCAMPS --Set Output function
smub . source. func smub.OUTPUT DCAMPS --Set Output function

smua.source.leveli = 0 --Set output level
smub.source.leveli 0 --Set output level

A-78

APPENDIX A
Scripts

smua.
smub.

smua.
smub.

smua
smub

smua
smub

source.rangei
source.rangei

source.limitv
source.limitv

.measure.nplc
.measure.nplc

1
1

.measure.autozero
.measure.autozero

1 sourcei --Set output level
1 sourcei --Set output level

1 cmpl --Set compliance level
1 cmpl --Set compliance level

--Set measurement aperture
--Set measurement aperture

= smua.AUTOZERO AUTO --Set Autozero mode
= smub.AUTOZERO AUTO --Set Autozero mode

-- Setup SMUA buffer to store all the result(s) in and start testing.

smua.

smua

smua

smua

smua.
smub.

smua.
smub.

smua

smua

smua
smub.

nvbufferl.clear() --Clear Nonvolatile buffer

source.output
source.output

source.leveli
source.leveli

.measure.count

.source.output

source.output

.nvbufferl.appendmode = 0 --Append buffer? 0 = No, 1 = Yes
.nvbufferl.collecttimestamps = 0 --Collect Timestamps? 0 = No, 1 = Yes

.nvbufferl.collectsourcevalues = 0 --Collect Source Values? 0 = No, 1 = Yes

smua.OUTPUT _ON --Enable outputs
smua.OUTPUT _ON --Enable outputs

1 sourcei -- Program source to level.
1 sourcei -- Program source to level.

1 points --Number of points to collect

.measure.v(smua.nvbufferl) -- Measure voltage and store in reading buffer.

smua.OUTPUT OFF
smub . OUTPUT_OFF

-- Update the front panel display and restore modified settings.

smua.
smub.

source.leveli
source.leveli

0
0

printbuffer (1,1 points, smua.nvbufferl)

end --function RunHighCurrent (sourcei, points)

--RunHighCurrent (1, 10

)

A-79

APPENDIX A
Scripts

Program 16. High Voltage with Current Measurement

-- [
KI2602Example High Voltage.tsp

This program is intended to perform the following:

1. Set up both SMUs of a Model 2602 for voltage bias and measure current on specific
intervals.

2. Deliver up to 80V @ 1A (40V @ 1A per SMU) by wiring each SMU Voltage Source in
series.

Wiring: SMUA Lo to SMUB Hi, SMUA Hi to DUT, SMUB Lo to DUT

WARNING: If either SMU reaches a compliance state, the instrument, device, or both
could be damaged.

System Requirements: 260x Firmware version: 1.0.2 or newer

Revl: JAC 3.21.2006
Rev2: JAC 10.15.2007

-Change 1 sourcev value to sourcev/2. Desired voltage value at DUT is now
programmed.

--11]
function RunHighVoltage (sourcev, points)

local 1 sourcev = sourcev/2 --Local variable for Source Voltage Value
local 1 points = points --Local variable for number of points to sample
local 1 cmpl = 1 --compliance

--Configure display
display.clear()
display.screen = display.SMUA SMUB

display.smua.measure.func = display.MEASURE DCAMPS
display.smub.measure.func = display.MEASURE DCAMPS

-- Configure source and measure settings.
smua.source.output = smua.OUTPUT OFF --Disable Output
smub.source.output = smub.OUTPUT OFF --Disable Output

smua.source.func = smua.OUTPUT DCVOLTS --Set Output function
smub.source.func = smub.OUTPUT DCVOLTS --Set Output function

smua.source.levelv = 0 --Set output level
smub.source.levelv = 0 --Set output level

smua.source.rangev = 1 sourcev --Set output level

A-80

APPENDIX A
Scripts

smub.

smua.
smub.

smua
smub

smua
smub

source

source
source

.measure.nplc
.measure.nplc

.rangev = 1 sourcev --Set output level

.limiti = 1 cmpl --Set compliance level
.limiti = 1 cmpl --Set compliance level

1 --Set measurement aperture
1 --Set measurement aperture

.measure.autozero = smua.AUTOZERO AUTO --Set Autozero mode
.measure.autozero

smub.AUTOZERO_AUTO --Set Autozero mode

-- Setup SMUA buffer to store all the result(s) in and start testing.

smua.

smua

smua

smua

smua.
smub.

smua.
smub.

smua

smua

smua.
smub.

nvbufferl.clear() --Clear Nonvolatile buffer

source
source

source
source

.measure.count

.nvbufferl.appendmode = 0 --Append buffer? 0 = No, 1 = Yes
.nvbufferl.collecttimestamps = 0 --Collect Timestamps? 0 = No, 1 = Yes

.nvbufferl.collectsourcevalues = 0 --Collect Source Values? 0 = No, 1 = Yes

.output = smua.OUTPUT ON --Enable outputs
.output = smua.OUTPUT ON --Enable outputs
.levelv = 1 sourcev -- Program source to level.
.levelv = 1 sourcev -- Program source to level.

1 points --Number of points to collect

.measure.i (smua.nvbufferl) -- Measure current and store in reading buffer.
source.output = smua.OUTPUT_OFF
source.output = smub.OUTPUT OFF

-- Update the front panel display and restore modified settings.
smua.source.levelv = 0
smub.source.levelv = 0

printbuffer (1,1 points, smua.nvbufferl)

end --function RunHighVoltage (sourcev, points)

--RunHighVoltage (40, 10)

A-81

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

KEITHLEY INSTRUMENTS, INC. M 28775 AURORA ROAD M CLEVELAND, OHIO 44139-1891 M 440-248-0400 M Fax: 440-248-6168 W

BELGIUM
Sint-Pieters-Leeuw
Ph: 02-3630040
Fax: 02-3630064
info@keithley.nl
www.keithley.nl

ITALY

Peschiera Borromeo (Mi)
Ph: 02-5538421

Fax: 02-55384228
info@keithley.it
www.keithley.it

A GREATER

CHINA

Beijing

Ph: 8610-82255010
Fax: 8610-82255018
china@keithley.com
www.keithley.com.cn

JAPAN

Tokyo

Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
info.jp@keithley.com
www.keithley.jp

SWEDEN
Stenungsund

Ph: 08-50904600
Fax: 08-6552610
sweden@keithley.com
www.keithley.com

© Copyright 2009 Keithley Instruments, Inc.

KEITHLEY

FINLAND

Espoo

Ph: 09-88171661
Fax: 09-88171662
finland@keithley.com
www.keithley.com

KOREA

Seoul

Ph: 82-2-574-7778
Fax: 82-2-574-7838
keithley@keithley.co.kr
www.keithley.co.kr

SWITZERLAND
Zurich

Ph: 044-8219444
Fax: 044-8203081
info@keithley.ch
www.keithley.ch

MEASURE OF

FRANCE
Saint-Aubin

Ph: 01-64532020
Fax: 01-60117726
info@keithley.fr
www.keithley.fr

MALAYSIA

Penang

Ph: 60-4-643-9679

Fax: 60-4-643-3794
chan_patrick@keithley.com
www.keithley.com

TAIWAN

Hsinchu

Ph: 886-3-572-9077

Fax: 886-3-572-9031

info_tw@keithley.com
www.keithley.com.tw

Printed in the U.S.A.

CONFIDENCE

GERMANY
Germering

Ph: 089-84930740
Fax: 089-84930734
info@keithley.de
www.keithley.de

NETHERLANDS
Gorinchem

Ph: 0183-635333
Fax: 0183-630821
info@keithley.nl
www.keithley.nl

UNITED KINGDOM
Theale

Ph: 0118-9297500
Fax: 0118-9297519
info@keithley.co.uk
www.keithley.co.uk

No. 2911

1-888-KEITHLEY M www.keithley.com

INDIA

Bangalore

Ph: 080-26771071,-72,-73
Fax: 080-26771076
support_india@keithley.com
www.keithley.com

SINGAPORE

Singapore

Ph: 65-6747-9077

Fax: 65-6747-2991
koh_william @keithley.com
www.keithley.com.sg

1208

Although this Guide was originally developed as an applications resource for Series 2600 System SourceMeter®
instruments, the application information and sample test scripts provided are equally suitable for use with
Keithley’s newest SMU line, the Series 2600A. To implement any of these applications with the new models,

simply substitute the equivalent new model number for the original, that is, Model 2602A to replace Model
2602, Model 2612A to replace Model 2612, etc.

Table of Contents

Section 1 General Information

1.1 Introduction. 11
1.2 Hardware Configuration. 1-1
1.2.1 System Configuration 11
1.2.2 Remote/Local Sensing Considerations. 1-2
13 Graphing. 1-2

Section 2 Two-terminal Device Tests

21 Introduction. 21
2.2 Instrument Connections. 2-1
2.3 Voltage Coefficient Tests of Resistors 21
231 Test Configuration 21
23.2 Voltage Coefficient Calculations 2-1
233 Measurement Considerations 22
234 Example Program 1:
Voltage Coefficient Test 2-2
235 Typical Program 1 Results 23
23.6 Program 1 Description. 2-3
24 Capacitor Leakage Test. 23
241 Test Configuration 2-3
24.2 Leakage Resistance Calculations. 2-3
243 Measurement Considerations 2-4
244 Example Program 2:
Capacitor Leakage Test. 2-4
245 Typical Program 2 Results 2-4
24.6 Program 2 Description. 25
25 Diode Characterization. 25
251 TestConfiguration 25
25.2 Measurement Considerations 25
253 Example Program 3:
Diode Characterization 25
254 Typical Program 3 Results 2-6
255 Program 3 Description. 2-6
25.6 UsingLogSweeps 2-7
257 Using Pulsed Sweeps. 27
Section 3 Bipolar Transistor Tests
3.1 Introduction. 3-1

3.2 Instrument Connections. 31

33

3.4

35

3.6

Common-Emitter Characteristics 3-1
33.1 TestConfiguration 3-2
33.2 Measurement Considerations 3-2
33.3 Example Program 4:

Common-Emitter Characteristics 3-2
334 Typical Program 4 Results 3-3
335 Program 4 Description. 33
GummelPlot 33
34.1 Test Configuration 33
34.2 Measurement Considerations 3-4
343 Example Program 5: Gummel Plot. 3-4
344 Typical Program 5Results 35
345 Program 5 Description. 35
CurrentGain 3-6
351 Gain Calculations 3-6
35.2 Test Configuration for Search Method. . . . 3-6
353 Measurement Considerations 3-6
354 Example Program 6A: DC Current Gain

Using Search Method. 3-6
355 Typical Program 6AResults 37
35.6 Program 6A Description 3-7
357 Modifying Program 6A. 3-7
3.5.8 Configuration for Fast Current Gain Tests. . 3-8
359 Example Program 6B: DC Current Gain

Using Fast Method 3-8
35.10 Program 6B Description 39
3.5.11 Example Program 7: AC Current Gain. . . . 3-9
3.5.13 Typical Program 7 Results 3-10
35.14 Program 7 Description. 3-10
35.15 Modifying Program7. 3-10
Transistor Leakage Current 3-10
3.61 Test Configuration 3-10
3.6.2 Example Program 8: Iy, Test 3-11
3.6.3 Typical Program 8 Results 3-11
3.64 Program 8 Description. 3-11
3.65 Modifying Program8. 3-12

Section 4 FET Tests

4.1
4.2

Introduction. 4-1

Instrument Connections 41

4.3

4.4

45

Common-Source Characteristics 41
431 Test Configuration 41
43.2 Example Program 9: Common-Source

Characteristics 4-1
433 Typical Program 9 Results 4-2
434 Program 9 Description. 42
435 Modifying Program9. 43
Transconductance Tests 4-3
441 Test Configuration 43
44.2 Example Program 10: Transconductance

vs. Gate Voltage Test 4-4
443 Typical Program 10 Results 4-5
444 Program 10 Description 45
Threshold Tests 4-6
451 Search Method Test Configuration. 4-6
452 Example Program 11A: Threshold Voltage

Tests Using Search Method. 4-6
453 Program 11A Description 4-7
454 Modifying Program 11A 47

455 Self-bias Threshold Test Configuration . . . 4-7
45.6 Example Program 11B: Self-bias

Threshold Voltage Tests 4-8
457 Program 11B Description 49
458 Modifying Program 11B 4-9

Section 5 Using Substrate Bias

5.1
5.2

5.3

Introduction. 5-1

Substrate Bias Instrument Connections 5-1

5.2.1 Source-Measure Unit Substrate Bias
Connections and Setup 5-1

5.2.2 Voltage Source Substrate Bias Connections . 5-2

Source-Measure Unit Substrate Biasing 5-2
53.1 Program 12 Test Configuration 5-2
53.2 Example Program 12: Substrate Current

vs. Gate-Source Voltage 5-2
53.3 Typical Program 12 Results 5-4
534 Program 12 Description 5-4
535 Modifying Program 12.. 5-5
53.6 Program 13 Test Configuration 55

53.7 Example Program 13: Common-Source
Characteristics with Source-Measure Unit
Substrate Bias 5-5

53.8 Typical Program 13 Results 5-7

5.4

539 Program 13 Description 5-7
53.10 Modifying Program 13. 5-7
BJT Substrate Biasing. 5-7
54.1 Program 14 Test Configuration 57
54.2 Example Program 14: Common-Emitter
Characteristics with a Substrate Bias 57
543 Typical Program 14 Results. 59
544 Program 14 Description 5-9
545 Modifying Program 14 5-10

Section 6 High Power Tests

6.1

6.2

Introduction. 6-1
6.1.1 Program 15 Test Configuration 6-1
6.1.2 Example Program 15: High Current

Source and Voltage Measure 6-1
6.13 Program 15 Description 6-2
Instrument Connections 6-2
6.2.1 Program 16 Test Configuration 6-2
6.2.2 Example Program 16: High Voltage

Source and Current Measure 6-2
6.2.3 Program 16 Description 63

Appendix A Scripts

Section 2. Two-Terminal Devices. Al
Program 1. Voltage Coefficient of Resistors Al
Program 2. Capacitor Leakage Test A5
Program 3. Diode Characterization A-8

Program 3A. Diode Characterization Linear Sweep . A-8
Program 3B. Diode Characterization Log Sweep . . A-11
Program 3C. Diode Characterization Pulsed Sweep. A-14

Section 3. Bipolar Transistor Tests A-19
Program 4. Common-Emitter Characteristics A-19
Program 5. Gummel Plot. A-24

Section 6. High Power Tests. A-28
Program 6. Current Gain. A28
Program 6A. Current Gain (Search Method). A28
Program 6B. Current Gain (Fast Method) A-32
Program 7. AC Current Gain A-36
Program 8. Transistor Leakage (ICEO). A-39

Section 4. FET Tests A-43
Program 9. Common-Source Characteristics A-43
Program 10. Transconductance A-48

Program 11. Threshold.
Program 11A. Threshold (Search)
Program 11B. Threshold (Fast).

Section 5. Using Substrate Bias.

Program 12. Substrate Current vs. Gate-Source
Voltage (FET Iz vs. Vi) + « o o oo ..

Program 13. Common-Source Characteristics
with Substrate Bias

Program 14. Common-Emitter Characteristics
with Substrate Bias.
Section 6. High Power Tests.
Program 15. High Current with
Voltage Measurement
Program 16. High Voltage with
Current Measurement

List of lllustrations

Section 1 General Information

Section 5 Using Substrate Bias

Figure 1-1. Typical system configuration for applications. . .1-1 Figure 5-1. TSP-Link connections for two instruments . . .
. Figure 5-2. TSP-Link instrument connections.
Section 2 Two-terminal Device Tests Figure 5-3. Program 12 test configuration
Figure 2-1. Series 2600 two-wire connections Figure 5-4. Program 12 typical results: Iz vs. Vgg
(local sensing)o 2l Figure 5-5. Program 13 test configuration.
Figure 2-2. Voltage coefficient test configuration 21

Figure 5-6. Program 13 typical results: Common-source
Figure 2-3. Test configuration for capacitor leakage test . . .2-3 characteristics with substrate bias

Figure 2-4. Staircase sweep 25 Figure 5-7. Program 14 test configuration.

Figure 2-5. Test configuration for diode characterization. . .2-5 Figure 5-8. Program 14 typical results: Common-emitter

Figure 2-6. Program 3 results: Diode forward characteristics with substrate bias
characteristics 2-6
Section 6 High Power Tests

Section 3 Bipolar Transistor Tests Figure 6-1. High current (SMUs in parallel).

Figure 3-1. Test configuration for common-emitter tests . . 3-1 Figure 6-2. High voltage (SMUs in series)

Figure 3-2. Program 4 results: Common-emitter

characteristics 33 Appendix A Scripts
Figure 3-3. Gummel plot test configuration. 3-4
Figure 3-4. Program 5 results: Gummel plot 35

Figure 3-5. Test configuration for current gain tests
using searchmethod. 3-6

Figure 3-6. Test configuration for fast current gain tests . . 3-8
Figure 3-7. Configuration for I tests 3-11

Figure 3-8. Program 8 results: ;o vS. Vego -+« + + . . . 3-12

Section 4 FET Tests

Figure 4-1. Test configuration for common-source tests . . 4-2

Figure 4-2. Program 9 results: Common-source
characteristics 43

Figure 4-3. Configuration for transductance tests 4-4
Figure 4-4. Program 10 results: Transconductance vs. Vg . 4-5
Figure 4-5. Program 10 results: Transconductance vs. I, . . 4-5

Figure 4-6. Configuration for search method
threshold tests 4-6

Figure 4-7. Configuration for self-bias threshold tests . . . 4-8

Section 1
General Information

1.1 Introduction

The following paragraphs discuss the overall hardware and soft-
ware configurations of the system necessary to run the example
application programs in this guide.

1.2 Hardware Configuration

1.2.1 System Configuration

Figure 1-1 shows the overall hardware configuration of a typical
test system. The various components in the system perform a
number of functions:

Series 2600 System SourceMeter Instruments: System Source-
Meter instruments are specialized test instruments capable
of sourcing current and simultaneously measuring voltage, or
sourcing current and simultaneously measuring voltage. A single
Source-Measure Unit (SMU) channel is required when testing two-
terminal devices such as resistors or capacitors. Three- and four-
terminal devices, such as BJTs and FETs, may require two or more
SMU channels. Dual-channel System SourceMeter instruments,
such as the Models 2602, 2612, and 2636, provide two SMUs in a
half-rack instrument. Their ease of programming, flexible expan-
sion, and wide coverage of source/measure signal levels make
them ideal for testing a wide array of discrete components. Before
starting, make sure the instrument you are using has the source
and measurement ranges that will fit your testing specifications.

Test fixture: A test fixture can be used for an external test circuit.
The test fixture can be a metal or nonmetallic enclosure, and is
typically equipped with a lid. The test circuit is mounted inside
the test fixture. When hazardous voltages (>30Vrms, 42Vpeak)
will be present, the test fixture must have the following safety
requirements:

CPU
w/GPIB

tput
GPIB Oustpu
Cable Series 2600

System DUT

SourceMeter
Output
LO

Figure 1-1. Typical system configuration for applications

WARNING

To provide protection from shock hazards, an enclo-
sure should be provided that surrounds all live
parts. Nonmetallic enclosures must be constructed
of materials suitably rated for flammability and
the voltage and temperature requirements of the
test circuit. For metallic enclosures, the test fixture
chassis must be properly connected to safety earth
ground. A grounding wire (#18 AWG or larger)
must be attached securely to the test fixture at a
screw terminal designed for safety grounding. The
other end of the ground wire must be attached to a
known safety earth ground.

Construction Material: A metal test fixture must be connected to a
known safety earth ground as described in the WARNING above.

WARNING
A nonmetallic test fixture must be constructed
of materials that are suitable for flammability,
voltage, and temperature conditions that may exist
in the test circuit. The construction requirements
for a nonmetallic enclosure are also described in
the WARNING above.

Test Circuit Isolation: With the lid closed, the test fixture must
completely surround the test circuit. A metal test fixture must be
electrically isolated from the test circuit. Input/output connectors
mounted on a metal test fixture must also be isolated from the test
fixture. Internally, Teflon® standoffs are typically used to insulate
the internal pc-board or guard plate for the test circuit from a
metal test fixture.

Interlock Switch: The test fixture must have a normally open inter-
lock switch. The interlock switch must be installed so that, when
the lid of the test fixture is opened, the switch will open, and
when the lid is closed, the switch will close.

WARNING
When an interlock is required for safety, a separate
circuit should be provided that meets the require-
ments of the application to protect the operator reli-
ably from exposed voltages. The output enable pin

SECTION 1
General Information

on the digital I/0 port on the Models 2601 and 2602
System SourceMeter instruments is not suitable for
control of safety circuits and should not be used to
control a safety interlock. The Interlock pin on the
digital 1/0 port for the Models 2611, 2612, 2635, and
2636 can be used to control a safety interlock.

Computer: The test programs in this document require a PC with
IEEE-488 (GPIB) communications and cabling.

Software: Series 2600 System SourceMeter instruments each
use a powerful on-board test sequencer known as the Test Script
Processor (TSP™). The TSP is accessed through the instrument
communications port, most often, the GPIB. The test program, or
script, is simply a text file that contains commands that instruct
the instrument to perform certain actions. Scripts can be written
in many different styles as well as utilizing different programming
environments. This guide discusses script creation and manage-
ment using Keithley Test Script Builder (TSB), an easy-to-use pro-
gram that allows you to create, edit, and manage test scripts. For
more information on TSB and scripting, see Section 2: Using Test
Script Builder of the Series 2600 Reference Manual.

Connections and Cabling: High quality cabling, such as the
Keithley Model 2600-BAN or Model 7078-TRX-3 triaxial cables,
should be used whenever possible.

1.2.2 Remote/Local Sensing
Considerations

In order to simplify the test connections, most applications in
this guide use local sensing for the SMUs. Local sensing requires

connecting only two cables between the SMUs and the test fixture
(OUTPUT HI and OUTPUT LO).

When sourcing and/or measuring voltage in a low impedance
test circuit, there can be errors associated with IR drops in the
test leads. Using four-wire remote sense connections optimizes
voltage source and measure accuracy. When sourcing voltage,
four-wire remote sensing ensures that the programmed voltage is
delivered to the DUT. When measuring voltage, only the voltage
drop across the DUT is measured. Use four-wire remote sensing
for the following source-measure conditions:

¢ Sourcing and/or measuring voltage in low impedance (<1k€2)
test circuits.

¢ Enforcing voltage compliance limit directly at the DUT.

1.3 Graphing

All of the programs in this guide print the data to the TSB Instru-
ment Console. In some cases, graphing the data can help you visu-
alize the characteristics of the DUT. One method of graphing is to
copy and paste the data from the TSB Instrument Console and
place it in a spreadsheet program such as Microsoft Excel.

After the script has run, and the data has been returned to the
Instrument Console, you can highlight it by using the PC’s mouse:
depress the Control and ¢ (commonly written as Ctrl+c) keys on
the keyboard simultaneously, switch to an open Excel worksheet,
and depress Control and v simultaneously (Ctrl+v). The data
should now be placed in the open worksheet columns so you can
use the normal graphing tools available in your spreadsheet pro-
gram to graph the data as needed.

This Applications Guide is designed for Series 2600 instrument users who want to create their own scripts using the Test Script
Builder software. Other options include LabTracer® 2 software, the Automated Characterization Suite (ACS), and a LabVIEW driver.

1-2

Section 2
Two-terminal Device Tests

2.1 Introduction

Two-terminal device tests discussed in this section include voltage
coefficient tests on resistors, leakage tests on capacitors, and diode
characterization.

2.2 Instrument Connections

Figure 2-1 shows the instrument connections for two-terminal
device tests. Note that only one channel of a Source-Measure Unit
(SMU) is required for these applications. Be aware that multi-
channel models, such as the Model 2602, can be used, but are not
required to run the test program.

WARNING

Lethal voltages may be present. To avoid a possible
shock hazard, the test system should be equipped
with protective shielding and a safety interlock
circuit. For more information on interlock tech-
niques, see Section 10 of the Series 2600 Reference
manual.

Turn off all power before connecting or discon-
necting wires or cables.

NOTES

1. Remote sensing connections are recommended for optimum
accuracy. See paragraph 1.2.2 for details.

2. If measurement noise is a problem, or for critical, low level
applications, use shielded cable for all signal connections.

2.3 Voltage Coefficient
Tests of Resistors

Resistors often show a change in resistance with applied voltage
with high megohm resistors (>10°C2) showing the most pro-
nounced effects. This change in resistance can be characterized as
the voltage coefficient. The following paragraphs discuss voltage
coefficient tests using a single-channel Model 2601 System Source-
Meter instrument. The testing can be performed using any of the
Series 2600 System SourceMeter instruments.

2.3.1 Test Configuration

The test configuration for voltage coefficient measurements is
shown in Figure 2-2. One SMU sources the voltage across the
resistor under test and measures the resulting current through
the resistor.

2.3.2 Voltage Coefficient Calculations

Two different current readings at two different voltage values are
required to calculate the voltage coefficient. Two resistance read-

Series 2600 Rear Panel
CHANNEL A
| s CATI A\ a |
LOLO G HI G G G Hi
HI
DUT
LO
Figure 2-1. Series 2600 two-wire connections (local

sensing)

Output HI

Series 2600
System
SourceMeter
Channel A
Source V, v
Measure |
R=V/I

Resistor

Test <— Und
Fixture R Tgster

Output LO %

Figure 2-2. Voltage coefficient test configuration

2-1

SECTION 2
Two-terminal Device Tests

ings, R, and R,, are then obtained, and the voltage coefficient in
%/V can then be calculated as follows:
100 (R,—R))

Voltage Coefficient (%/V) = R (V,-V,)
1 27"

where: R, = resistance calculated with first applied voltage (V).

R, = resistance calculated with second applied voltage

V2).
For example, assume that the following values are obtained:
R, = 1.01 x 10°Q
R, =1 x 10Q)
(V,= V) = 10V
The voltage coefficient is:

3
Voltage Coefficient (%/V) = % =0.1%/V

2.3.3 Measurement Considerations

A couple of points should be noted when using this procedure to
determine the voltage coefficient of high megohm resistors. Keep
in mind that any leakage resistance in the test system will degrade
the accuracy of your measurements. To avoid such problems, use
only high quality test fixtures that have insulation resistances
greater than the resistances being measured. Using isolation resis-
tances 10% greater than the measured resistance is a good rule of
thumb. Also, make certain that the test fixture sockets are kept
clean and free of contamination as oils and dirt can lower the
resistance of the fixture and cause error in the measurement.

There is an upper limit on the resistance value that can be
measured using this test configuration. For one thing, even a
well-designed test fixture has a finite (although very high) path
isolation value. Secondly, the maximum resistance is determined
by the test voltage and current-measurement resolution of the test
instrument. Finally, the instrument has a typical output impe-
dance of 105€2. To maximize measurement accuracy with a given
resistor, use the highest test voltages possible.

2.3.4 Example Program 1: Voltage
Coefficient Test

Program 1 demonstrates programming techniques for voltage
coefficient tests. Follow the steps that follow to use the test pro-
gram. To reiterate, this test requires a single Source-Measure
channel. For this example, we will refer to the single-channel
Model 2601 System SourceMeter instrument. The test program

2-2

can be used with the multi-channel members of the Series 2600
family with no modification.

1. With the power off, connect the Model 2601 System Source-
Meter instrument to the computer’s I[EEE-488 interface.

2. Connect the test fixture to the instrument using appropriate
cables (see Figure 2-1).

3. Turn on the instrument, and allow the unit to warm up for
two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A
in this guide into the TSB script editing window (Program
1: Voltage Coefficient), manually enter the code from the
appendix, or import the TSP file ‘Volt _Co.tsp’ after down-
loading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50914.

6. Install the resistor being tested in the test fixture. The first
step in the operation requires us first to send the code to the
instrument. The simplest method is to right-click in the open
script window of TSB, and select ‘Run as TSP file’. This will
compile the code and place it in the volatile run-time memory
of the instrument. To store the program in non-volatile
memory, see the “TSP Programming Fundamentals” section of
the Series 2600 Reference Manual.

7. Once the code has been placed in the instrument run-time
memory, we can run it simply by calling the function ‘Volt
Co (). This can be done by typing the text ‘Volt _ Co ()’ after
the active prompt in the Instrument Console line of TSB.

8. In the program “Volt Cotsp’, the function Volt
Co(vlsrc, v2src) is created. The variables vlsrc and
v2src represent the two test voltage values applied to the
device-under-test (DUT). If they are left blank, the function
will use the default values given to these variables, but you can
specify what voltages are applied by simply sending voltages
that are in-range in the function call. As an example, if you
wanted to source 2V followed by 10V, simply send Volt _
Co(2, 10) to the instrument.

9. The instrument will then source the programmed voltages
and measure the respective currents through the resistor. The
calculated voltage coefficient and two resistance values will
then be displayed in the Instrument Console window of TSB.

SECTION 2
Two-terminal Device Tests

2.3.5 Typical Program 1 Results

The actual voltage coefficient you obtain using the program will,
of course, depend on the resistor being tested. The typical voltage
coefficient obtained for a 10GQ resistor (Keithley part number
R-319-10G) was about 8ppm/V (0.008%/V).

2.3.6 Program 1 Description

At the start of the program, the instrument is reset to default con-
ditions, and the error queue and data storage buffers are cleared.
The following configuration is then applied before the data col-
lection begins:

¢ Source V, DC mode

* Local sense

* 100mA compliance, autorange measure
¢ INPLC line cycle integration

* vlsrc: 100V

* v2src: 200V

The instrument then sources v1src, checks the source for com-
pliance in the function named Check _ Comp (), and performsa
measurement of the current if compliance is false. The source then
applies v2src and performs a second current measurement.

The function Calc _ Val() then performs the calculation of the
voltage coefficient based on the programmed source values and
the measured current values as described in Section 2.3.2, Voltage
Coefficient Calculations.

The instrument output is then turned off and the function

Note: If the compliance is true, the instrument will abort the pro-
gram and print a warning to the TSB window. Check the DUT
and cabling to make sure everything is connected correctly and
re-run the test.

2.4 Capacitor Leakage Test

One important parameter associated with capacitors is leakage
current. Once the leakage current is known, the insulation resist-
ance can be easily calculated. The amount of leakage current in
a capacitor depends both on the type of dielectric as well as the
applied voltage. With a test voltage of 100V, for example, ceramic
dielectric capacitors have typical leakage currents in the nanoamp
to picoamp range, while polystyrene and polyester dielectric
capacitors exhibit a much lower leakage current—typically in the
femtoamp (10-A) range

2.4.1 Test Configuration

Figure 2-3 shows the test configuration for the capacitor leakage
test. The instrument sources the test voltage across the capacitor,
and it measures the resulting leakage current through the device.
The resistor, R, is included for current limiting, and it also helps
to reduce noise. A typical value for R is 1IMQ, although that value
can be decreased for larger capacitor values. Note, however, that
values less than 10kQ are not recommended.

2.4.2 Leakage Resistance Calculations

Once the leakage current is known, the leakage resistance can
easily be calculated from the applied voltage and leakage current
value as follows:

Print Dataf() is run to print the data to the TSB window. R=VI
Output HI le=—"
Series 2600 l "
Capacitor
System I cL o Un%er
SourceMeter gk Test
Channel A Fixture))
Source V, v I?es_lstor R required to
Measure | limit current and
reduce noise.
4 Typical value: 1TMQ
Output LO

Figure 2-3. Test configuration for capacitor leakage test

v

Minimum value: 10kQ

2-3

SECTION 2
Two-terminal Device Tests

For example, assume that you measured a leakage current of 25nA
with a test voltage of 100V. The leakage resistance is simply:

R =100/25nA = 4GQ (4 X 10°Q)

2.4.3 Measurement Considerations

After the voltage is applied to the capacitor, the device must be
allowed to charge fully before the current measurement can be
made. Otherwise, an erroneous current, with a much higher
value, will be measured. The time period during which the capac-
itor charges is often termed the “soak” time. A typical soak time is
seven time constants, or 7RC, which would allow settling to less
than 0.1% of final value. For example, if R is IMC2, and C is 1uF,
the recommended soak time is seven seconds. With small leakage
currents (<1nA), it may be necessary to use a fixed measurement
range instead of auto ranging.

2.4.4 Example Program 2:
Capacitor Leakage Test

Program 2 performs the capacitor leakage test described above.
Follow the steps that follow to run the test using this program.

WARNING
Hazardous voltage may be present on the capacitor
leads after running this test. Discharge the capac-
itor before removing it from the test fixture.

1. With the power off, connect the instrument to the computer’s
IEEE-488 interface.

2. Connect the test fixture to the instrument using appropriate
cables.

3. Turn on the instrument, and allow the unit to warm up for
two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 2),
manually enter the code from the appendix, or import the TSP
file ‘Cap _Leak.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: http://www.
keithley.com/data?asset=50927.

6. Discharge and install the capacitor being tested, along with
the series resistor, in the appropriate axial component sockets
of the test fixture.

2-4

WARNING
Care should be taken when discharging the capac-
itor, as the voltage present may represent a shock
hazard!

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘Cap _ Leak()’ This can be done by typing the text
‘Cap _ Leak()’ after the active prompt in the Instrument
Console line of TSB.

9. In the program ‘Cap_Leak.tsp’, the function Cap
Leak(vsrc) is created. The variable vsrc represents the
test voltage value applied to the device-under-test (DUT). If
it is left blank, the function will use the default value given
to the variable, but you can specify what voltage is applied
by simply sending a voltage that is in-range in the function
call. As an example, if you wanted to source 100V, simply send
Cap _ Leak(100) to the instrument.

10. The instrument will then source the programmed voltage and
measure the respective current through the capacitor. The
measured current leakage and calculated resistance value will
then be displayed in the Instrument Console window of TSB.

NOTE
The capacitor should be fully discharged before run-
ning the test. This can be accomplished by sourcing 0V
on the device for the soak time or by shorting the leads
together. Care should be taken because some capacitors
can hold a charge for a significant period of time and
could pose an electrocution risk.

The soak time, denoted in the code as the variable 1 _ soak,
has a default value of 10s. When entering the soak time, choose
a value of at least 7RC to allow settling to within 0.1% of final
value. At very low currents (<500fA), a longer settling time may
be required to compensate for dielectric absorption, especially at
high voltages.

2.4.5 Typical Program 2 Results

As pointed out earlier, the exact value of leakage current will
depend on the capacitor value as well as the dielectric. A typical
value obtained for 1uF aluminum electrolytic capacitor was about
80nA at 25V.

SECTION 2
Two-terminal Device Tests

2.4.6 Program 2 Description

At the start of the program, the instrument is reset to default con-
ditions, the error queue, and data storage buffers are cleared. The
following configuration is then applied before the data collection
begins:

¢ Source V, DC mode

* Local sense

* 10mA compliance, autorange measure
* 1 NPLC Line cycle integration

e vsrc: 40V

The instrument then sources vsrc, checks the source for compli-
ance in the function named Check _ Comp (), and performs a
measurement of the current if compliance is false.

The function Calc _ Val() then performs the calculation of
the leakage resistance based on the programmed source value
and the measured current value as described in paragraph 2.4.2,
Leakage Resistance Calculations.

The instrument output is then turned off and the function
Print Data() is run to print the data to the TSB window.

Note: If the compliance is true, the instrument will abort the pro-
gram and print a warning to the TSB window. Check the DUT
and cabling to make sure everything is connected correctly and
re-run the test.

2.5 Diode Characterization

The System SourceMeter instrument is ideal for characterizing
diodes because it can source a current through the device, and
measure the resulting forward voltage drop (V;) across the device.
A standard technique for diode characterization is to perform a
staircase sweep (Figure 2-4) of the source current from a starting
value to an end value while measuring the voltage at each current
step. The following paragraphs discuss the test configuration and
give a sample test program for such tests.

2.5.1 Test Configuration

Figure 2-5 shows the test configuration for the diode character-
ization test. The System SourceMeter instrument is used to source
the forward current (Iy) through the diode under test, and it also
measures the forward voltage (V;) across the device. I; is swept
across the desired range of values, and V; is measured at each cur-
rent. Note that the same general configuration could be used to

Staircase Sweep

Sourced Value

Time

Figure 2-4. Staircase sweep

Output HI I W

Series 2600
System
SourceMeter ! Diode ~N Test
Channel A U'}‘Zg{ N Vv Fixture
Sweep I, v e
Measure V,

Output LO %

Figure 2-5. Test configuration for diode characterization

measure leakage current by reversing the diode, sourcing voltage,
and measuring the leakage current.

2.5.2 Measurement Considerations

Because the voltages being measured will be fairly small (=0.6V),
remote sensing can be used to minimize the effects of voltage
drops across the test connections and in the test fixture. Remote
sensing requires the use of the Sense connections on the System
SourceMeter channel being used, as well as changing the code to
reflect remote sensing. For more information on remote sensing,
see the Series 2600 Reference Manual.

2.5.3 Example Program 3:
Diode Characterization

Program 3 demonstrates the basic programming techniques for
running the diode characterization test. Follow these steps to use
this program:

SECTION 2
Two-terminal Device Tests

1. With the power off, connect the instrument to the computer’s
IEEE-488 interface.

2. Connect the test fixture to the instrument using appropriate
cables.

3. Turn on the instrument, and allow the unit to warm up for
two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 3A,
Diode Forward Characterization), manually enter the code
from the appendix, or import the TSP file ‘Diode_Fwd_Char.
tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: http://wwuw.
keithley.com/dataZasset=50924.

6. Install a small-signal silicon diode such as a IN914 or 1N4148
in the appropriate axial socket of the test fixture.

7. Now, we must send the code to the instrument. One method
is simply to right-click in the open script window of TSB, and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “TSP Program-
ming Fundamentals” section of the Series 2600 Reference
Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘Diode_Fwd_Char()’. This can be done by typing the text
‘Diode Fwd Char() after the active prompt in the
Instrument Console line of TSB.

9. Inthe program ‘Diode_Fwd_Char.tsp’, the function Diode
Fwd Char(ilevel, start, stop, steps) is
created. The variable ilevel represents the current value
applied to the device-under-test (DUT) both before and after
the staircase sweep has been applied. The start variable
represents the starting current value for the sweep, stop repre-
sents the end current value, and steps represents the number
of steps in the sweep. If any values are left blank, the function
will use the default value given to that variable, but you can
specify what voltage is applied by simply sending a voltage that
is in-range in the function call.

10. As an example, if you wanted to configure a test that would
source OmA before and after the sweep, with a sweep start
value of 1mA, stop value of 10mA, and 10 steps, you would

2-6

Diode Forward Characteristics
9.00E-01

8.00E-01 - Voltage Data (V)

7.00E-01 4

6.00E-01

5.00E-01

4.00E-01

Voltage (Volts)

3.00E-01

2.00E-01

1.00E-01

0.00E-00 T T T T
0.00E+00 2.00E-03 4.00E-03 6.00E-03 8.00E-03

Current (Amps)

1.00E-02

Figure 2-6. Program 3 results: Diode forward
characteristics

simply send Diode Fwd _ Char(0,
10) to the instrument.

0.001, 0.01,

11. The instrument will then source the programmed current
staircase sweep and measure the respective voltage at each
step. The measured and sourced values are then printed to
the screen (if using TSB). To graph the results, simply copy
and paste the data into a spreadsheet such as Microsoft Excel
and chart.

2.5.4 Typical Program 3 Results

Figure 2-6 shows typical results obtained using Example Program
3. These results are for a 1N914 silicon diode.

2.5.5 Program 3 Description

At the start of the program, the instrument is reset to default con-
ditions, the error queue, and data storage buffers are cleared. The
following configuration is then applied before the data collection
begins:

¢ Source I

* Local sense

¢ 10V compliance, autorange measure

¢ Ilevel: 0A

¢ start: 0.001A

* stop: 0.01A

* steps: 10

The instrument then sources ilevel, dwells 1 delay sec-
onds, and begins the staircase sweep from start to stop in

steps. At each current step, both the current and voltage are
measured.

SECTION 2
Two-terminal Device Tests

The instrument output is then turned off and the function
Print Data() isrun to print the data to the TSB window. To
graph the results, simply copy and paste the data into a spread-
sheet such as Microsoft Excel and chart.

2.5.6 Using Log Sweeps

With some devices, it may be desirable to use a log sweep because
of the wide range of currents necessary to perform the test. Pro-
gram 3B performs a log sweep of the diode current.

If your computer is currently connected to the Internet, you can
click on this link to begin downloading ‘Diode Fwd_Char Log.
tsp’ bitp:/lwww.keithley.com/data’asset=50923.

Note that the start and stop currents are programmed just as
before, although with a much wider range than would be practical
with a linear sweep. With log sweep, however, the points param-
eter, which defines the number of points per decade, replaces the
steps parameter that is used with the linear sweep.

To run the Log sweep, we must send the code to the instrument.
One method is simply to right-click in the open script window
of TSB, and select ‘Run as TSP file’. This will compile the code

and place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP Pro-
gramming Fundamentals” section of the Series 2600 Reference
Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the function
‘Diode_Fwd_Char_Log(). This can be done by typing the text
‘Diode Fwd Char Log()’ after the active prompt in the
Instrument Console line of TSB.

2.5.7 Using Pulsed Sweeps

In some cases, it may be desirable to use a pulsed sweep to avoid
device self-heating that could affect the test results. Program 3C
performs a staircase pulse sweep. In this program, there are two
additional variables ton and toff, where ton is the source on dura-
tion and toff is the source off time for the pulse. During the toff
portions of the sweep, the source value is returned to the ilevel
bias value.

If your computer is currently connected to the Internet, you can

click on this link to begin downloading ‘Diode_Fwd_Char_Pulse.
tsp’ bitp:/lwww.keithley.com/data’asset=50922.

27

SECTION 2
Two-terminal Device Tests

2-8

Section 3
Bipolar Transistor Tests

3.1 Introduction

Bipolar transistor tests discussed in this section include: tests to
generate common-emitter characteristic curves, Gummel plot,
current gain, and transistor leakage tests.

3.2 Instrument Connections

Figure 3-1 shows the instrument connections for the bipolar
transistor tests outlined in this section. Two Source-Measure
channels are required for the tests (except for the leakage current
test, which requires only one Source-Measure channel).

Keithley Model 2600-BAN cables or Model 7078-TRX-3 low noise
triaxial cables are recommended to make instrument-to-test fix-
ture connections. In addition, the safety interlock connecting
cables must be connected to the instrument and fixture if using
instrumentation capable of producing greater than 42V.

WARNING

Lethal voltages may be exposed when working with
test fixtures. To avoid a possible shock hazard, the
fixture must be equipped with a working safety
interlock circuit. For more information on the

Transistor

Under Test

Output HI

Series 2600
System
SourceMeter
Channel B

Sweep I,

Output LO

interlock of the Series 2600, please see the Series
2600 Reference Manual.

NOTES

Remote sensing connections are recommended for
optimum accuracy. See paragraph 1.2.2 for details.

If measurement noise is a problem, or for critical, low
level applications, use shielded cable for all signal
connections.

3.3 Common-Emitter
Characteristics

Common-emitter characteristics are probably the most familiar
type of curves generated for bipolar transistors. Test data used to
generate these curves is obtained by sweeping the base current
(I5) across the desired range of values at specific increments. At
each be current value, the collector-emitter voltage (V) is swept
across the desired range, again at specific increments. At each Vg,
value, the collector current (I;) is measured.

Once the data is collected, it is conveniently printed (if using TSB).
You can then use the copy-and-paste method to place the data
into a spreadsheet program such as Microsoft Excel. Common

};V

Output HI

Series 2600
System
SourceMeter

Channel A
Sweep V,,
Measure I,

Test

€ Fixture

v

Output LO

Figure 3-1. Test configuration for common-emitter tests

Vv

SECTION 3
Bipolar Transistor Tests

plotting styles include graphing I.. vs. Vi for each value of I. The
result is a family of curves that shows how I varies with V,; at
specific I values.

3.3.1 Test Configuration

Figure 3-1 shows the test configuration for the common-emitter
characteristic tests. Many of the transistor tests performed require
two Source-Measure Units (SMUs). The Series 2600 System
SourceMeter instruments have dual-channel members such as the
Model 2602, 2612, and 2636. This offers a convenient transistor
test system all in one box. The tests can be run using two single-
channel instruments, but the code will have to be modified to
do so.

In this test, SMUB sweeps I, across the desired range, and SMUA
sweeps V¢ and measures I.. Note that an NPN transistor is shown
as part of the test configuration. A small-signal NPN transistor
with an approximate current gain of 500 (such as a 2N5089) is
recommended for use with the test program below. Other similar
transistors such as a 2N3904 may also be used, but the program
may require modification.

3.3.2 Measurement Considerations

A fixed delay period of 100ms, which is included in the program,
may not be sufficient for testing some devices. Also, it maybe nec-
essary to change the programmed current values to optimize the
tests for a particular device.

3.3.3 Example Program 4:
Common-Emitter Characteristics

Program 4 can be used to run common-emitter characteristic tests
on small-signal NPN transistors. In order to run the program,
follow these steps:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate cables
(see Figure 3-1).

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 4),
manually enter the code from the appendix, or import the TSP
file ‘BIT Comm_Emit.tsp’ after downloading it to your PC.

3-2

10.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50930.

Install an NPN transistor such as a 2N5089 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘BIT _ Comm _ Emit ()’ This can be done by typing
the text ‘BJT _ Comm _ Emit ()’ after the active prompt in
the Instrument Console line of TSB.

In the program ‘BJ]T Comm_Emit.tsp', the function BJT _
Comm _Emit(istart, istop, isteps, vstart,
vstop, vsteps) is created.

* istart represents the sweep start current value on the
base of the transistor

* istop represents the sweep stop value
¢ isteps is the number of steps in the base current sweep

* vstart represents the sweep start voltage value on the
collector-emitter of the transistor

* vstop represents the sweep stop voltage value
* vsteps is the number of steps in the base current sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the base current
swept from 1uA to 100uA in 10 steps, and the collector-emitter
voltage (Vo) to be swept from 0 to 10V in 1V steps, you would
send BJT _Comm _ Emit(1E-6, 100E-6, 10, 0, 10,

10) to the instrument.

The instrument will then source the programmed start current
on the base, sweep the voltage on the collector-emitter, and
measure the respective current through the collector-emitter.
The base current will be incremented and the collector-emitter
sweep will take place again. After the final base source value
and associated collector-emitter sweep, the collector-emitter
voltage (V;), measured collector-emitter current (I;), and
base current (I) values will then be displayed in the Instru-
ment Console window of TSB.

SECTION 3
Bipolar Transistor Tests

Common-Emitter Characteristics (2N5089)

5.00E-02
4.00E-02
@ 3.00E-02 -
a I, =50pA
E I, =40pA
- 2.00E-02 - IB - 30pA
1, = 20pA
1.00E-02 +
1, = 10pA
0.00E+00 ¢ T T T T T T T T
0 1 2 3] 4 6 7 8 9 10
V,, (Volts)

Figure 3-2. Program 4 results: Common-emitter characteristics

3.3.4 Typical Program 4 Results

Figure 3-2 shows typical results generated by Example Program 4.
A 2N5089 NPN transistor was used to generate these test results.

3.3.5 Program 4 Description

For the following program description, refer to the program
listing below.

¢ Source I

* IV compliance, 1.1V range

* Local sense

* istart current: 10M

* istop current: 50uA

* isteps:5

Following SMUB setup, SMUA, which sweeps VCE and measures
IC, is programmed as follows:

* Source V

* Local sensing

* 100mA compliance, autorange measure

¢ 1 NPLC Line cycle integration (to reduce noise)

e vstart: 0V

e vstop: 10V

* vsteps: 100

Once the two units are configured, the SMUB sources istart,
SMUA sources vstart, and the voltage (Vi) and current (Ig;)

for SMUA are measured. The source value for SMUA is then
incremented by 1 _ vstep, and the sweep is continued until
the source value reaches vstop. Then, SMUB is incremented by
1 istep and SMUA begins another sweep from vstart to
vstop in vsteps. This nested sweeping process continues until
SMUB reaches istop.

The instrument output is then turned off and the function
Print Data() is run to print the data to the TSB window. To
graph the results, simply copy and paste the data into a spread-
sheet such as Microsoft Excel and chart.

3.4 Gummel Plot

A Gummel plot is often used to determine current gain variations
of a transistor. Data for a Gummel plot is obtained by sweeping
the base-emitter voltage (Vy;) across the desired range of values at
specific increments. At each Vy; value, both the base current (Iy)
and collector current (I.) are measured.

Once the data are taken, the data for I, I, and Vy; is returned to
the screen. If using TSB, a plot can be generated using the “copy-
and-paste” method in a spreadsheet program such as Microsoft
Excel. Because of the large differences in magnitude between I
and I, the Y axis is usually plotted logarithmically.

3.4.1 Test Configuration

Figure 3-3 shows the test configuration for Gummel plot tests.
SMUB is used to sweep Vy; across the desired range, and it also

33

SECTION 3
Bipolar Transistor Tests

Transistor)
Under Test L
\ \ Output HI
— Vee Teat Series 2600
Output HI X / Fixture System
Series 2600 Vee > SourceMeter
System | Channel A
SourceMeter v Source V,
Channel B Measure |,
Sweep V.. |V
Measure I, Output LO
Output LO

Vv

Figure 3-3. Gummel plot test configuration

measures ;. SMUA sets V. to the desired fixed value, and it also
measures I.

Due to the low current measurements associated with this type of
testing, the Keithley Model 2636 System SourceMeter instrument
is recommended. Its low level current measurement capabilities
and dual-channel configuration are ideal for producing high
quality Gummel plots of transistors.

3.4.2 Measurement Considerations

As written, the range of Vg test values is from 0V to 0.7V in 0.01V
increments. It may be necessary, however, to change these limits
for best results with your particular device. Low currents will be
measured so take the usual low current precautions.

3.4.3 Example Program 5: Gummel Plot

Program 5 demonstrates the basic programming techniques
for generating a Gummel plot. Follow these steps to run this
program:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s [EEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

. You can simply copy and paste the code from Appendix A in

this guide into the TSB script editing window (Program 5),
manually enter the code from the appendix, or import the TSP
file ‘Gummel.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/www.
keithley.com/dataZasset=50918

. Install an NPN transistor such as a 2N5089 in the appropriate

transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

. Once the code has been placed in the instrument run-time

memory, we can run it at any time simply by calling the
function ‘Gummel(). This can be done by typing the text
‘Gummel ()’ after the active prompt in the Instrument Con-
sole line of TSB.

. In the program ‘Gummel.tsp’, the function Gummel

(vbestart, vbestop, vbesteps, vcebias) is
created.

* vbestart represents the sweep start voltage value on
the base of the transistor

* vbestop represents the sweep stop value

* vbesteps is the number of steps in the base
voltage sweep

SECTION 3
Bipolar Transistor Tests

* vcebias represents the voltage bias value on the
collector-emitter of the transistor

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the base voltage
swept from 0.1V to 1V in 10 steps, and the collector-emitter
voltage (V) to be biased 5V, you would send Gumme1 (0.1,
1, 10, 5) to the instrument.

10. The base-emitter voltage will be swept between 0V and 0.7V in
0.01V increments, and both I and I will be measured at each
Vy; value. Note that a fixed collector-emitter voltage of 10V is
used for the tests.

11. Once the sweep has been completed, the data (I, I, and Vy;)
will be presented in the Instrument Console window of TSB.

3.4.4 Typical Program 5 Results

Figure 3-4 displays a typical Gummel plot as generated by
Example Program 5. Again, the transistor used for this example
was a 2N5089 NPN silicon transistor.

3.4.5 Program 5 Description
SMUB, which sweeps Vy; and measures I, is set up as follows:

¢ Source V
* 1mA compliance, autorange measure
* Local sensing

* 1 NPLC Line cycle integration

* vbestart: OV
* vbestop: 0.7V
* vbesteps: 70

SMUA, which sources V,; and measures I, is programmed in the
following manner:

* Source V

* Local sensing

* 100mA compliance, autorange measure
* 1 NPLC Line cycle integration

¢ Constant sweep (number of points programmed to 71),
Ve = 10V

* vcebias: 10V

Following unit setup, both unit triggers are armed, and the instru-
ments are placed into the operate mode (lines 320 and 330).

Once triggered, SMUB sets Vy; to the required value, and SMUA
then sets V. and measures I at I;. At the end of its measurement,
SMUB increments Vg, and the cycle repeats until Vg reaches the
value set for vbestop.

During the test, Vg, I, and I are measured. Once the test has
completed, the data is written to the Instrument Console of TSB
and can be graphed in a spreadsheet program using the “copy-
and-paste” method of data transfer.

Gummel Plot (2N5089)

1.00E+00

1.00E-02 -

1.00E-04

1.00E-06

1.00E-08

Current (Amps)

1.00E-10

1.00E-12 4

1.00E-14

Vg vs. |

Ve vs. I

T T T
0 0.1 0.2 0.3

T T T
0.4 0.5 0.6 0.7

V.. (Volts)

Figure 3-4. Program 5 results: Gummel plot

3-5

SECTION 3
Bipolar Transistor Tests

3.5 Current Gain

The following paragraphs discuss two methods for determining
DC current gain, as well as ways to measure AC current gain.

3.5.1 Gain Calculations

The common-emitter DC current gain of a bipolar transistor is
simply the ratio of the DC collector current to the DC base current
of the device. The DC current gain is calculated as follows:

=l
8=

where: 8 = current gain
I. = DC collector current

I; = DC base current

Often, the differential or AC current gain is used instead of the
DC value because it more closely approximates the performance
of the transistor under small-signal AC conditions. In order to
determine the differential current gain, two values of collector
current (I, and I,) at two different base currents (I, and I,) are
measured. The current gain is then calculated as follows:

Al
where: 82 = AC current gain
Alg =lp-lg
Aly =11y
Under Test

Output HI

Series 2600
System
SourceMeter

Channel B
Set |, for
desired I,

Output LO

Tests for both DC and AC current gain are generally done at one
specific value of V.. AC current gain tests should be performed
with as small a Al}; as possible so that the device remains in the
linear region of the curve.

3.5.2 Test Configuration for
Search Method

Figure 3-5 shows the test configuration for the search method of
DC current gain tests and AC gain tests. A dual-channel System
SourceMeter instrument is required for the test. SMUB is used
to supply I, and I,. SMUA sources V., and it also measures the
collector currents I; and I,.

3.5.3 Measurement Considerations

When entering the test base currents, take care not to enter values
that will saturate the device. The approximate base current value
can be determined by dividing the desired collector current value
by the typical current gain for the transistor being tested.

3.5.4 Example Program 6A: DC Current
Gain Using Search Method

Use Program 0A to perform DC current gain tests on bipolar tran-
sistors. Proceed as follows:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the System SourceMeter instrument and allow the
unit to warm up for two hours for rated accuracy.

A/ I SourceMeter

Output HI

Series 2600
System

v Test
€ Fixture

Channel A
Vv Source V,
Measure I,

Output LO

Vv

Figure 3-5. Test configuration for current gain tests using search method

3-6

SECTION 3
Bipolar Transistor Tests

10.

11.

Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 6A),
manually enter the code from the appendix, or import the TSP
file ‘DC_Gain_Search.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50925

Install an NPN transistor such as a 2N5089 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘DC_Gain_Search(). This can be done by typing the text
‘DC _ Gain Search()’ after the active prompt in the
Instrument Console line of TSB.

In the program ‘DC_Gain_Search.tsp’, the function DC
Gain Search(vcesource, lowib, highib,
targetic) is created.

* vcesource represents the voltage value on the
collector-emitter of the transistor

¢ lowib represents the base current low limit for the
search algorithm

* highib represents the base current high limit for the
search algorithm

* targetic represents the target collector current for the
search algorithm

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in
the function call. As an example, if you wanted the collector-
emitter voltage (V) to be 2.5V, the base current low value
at 10nA, the base current high value at 100nA, and the
target collector current to be 10uA, you would send DC
Gain Search(2.5,10E-9, 100E-9, 10E-6) to the
instrument.

The sources will be enabled, and the collector current of
the device will be measured. The program will perform an

iterative search to determine the closest match to the target
I (within £5%). The DC current gain of the device at specific
I and I; values will then be displayed on the computer CRT.
If the search is unsuccessful, the program will print “Itera-
tion Level Reached”. This is an error indicating that the search
reached its limit. Recheck the connections, DUT, and variable
values to make sure they are appropriate for the device.

12. Once the sweep has been completed, the data (I, I, and R)
will be presented in the Instrument Console window of TSB.

3.5.5 Typical Program 6A Results

A typical current gain for a 2N5089 would be about 500. Note,
however, that the current gain of the device could be as low as
300 or as high as 800.

3.5.6 Program 6A Description

Initially, the iteration variables are defined and the instrument is
returned to default conditions. SMUB, which sources I, is set up
as follows:

¢ Source I
* [V compliance, 1.1V range

* Local sense

SMUA, which sources V; and measures I, is configured as
follows:

* Source V
* Local sense

¢ 100mA compliance, autorange measure

Once the SMU channels have been configured, the sources values
are programmed to 0 and the outputs are enabled. The base cur-
rent (Iy) is sourced and the program enters into the binary search
algorithm for the target I by varying the V,; value, measuring the
I, comparing it to the target I, and adjusting the V,; value, if nec-
essary. The iteration counter is incremented each cycle through
the algorithm. If the number of iterations has been exceeded, a
message to that effect is displayed, and the program halts.

Assuming that the number of iterations has not been exceeded,
the DC current gain is calculated and displayed in the Instrument
Console window of the TSB.

3.5.7 Modifying Program 6A

For demonstration purposes, the I target match tolerance is set
to =5%. You can, of course, change this tolerance as required.
Similarly, the iteration limit is set to 20. Again, this value can be
adjusted for greater or fewer iterations as necessary. Note that it

3-7

SECTION 3
Bipolar Transistor Tests

may be necessary to increase the number of iterations if the target
range is reduced.

3.5.8 Configuration for Fast
Current Gain Tests

Figure 3-6 shows the test configuration for an alternate method
of current gain tests—one that is much faster than the search
method discussed previously. SMUB is used to supply Ve, and
it also measures I;. SMUA sources the emitter current (Iy) rather
than the collector current (I;). Because we are sourcing emitter
current instead of collector current, the current gain calculations
must be modified as follows:

-1y
Iy

WARNING

When a System SourceMeter instrument is pro-
grammed for remote sensing, hazardous voltage
may be present on the SENSE and OUTPUT termi-
nals when the unit is in operation regardless of the
programmed voltage or current. To avoid a possible
shock hazard, always turn off all power before
connecting or disconnecting cables to the Source-
Measure Unit or the associated test fixture.

NOTE

Because of the connection convention used, I, and
V¢ must be programmed for opposite polarity than
normal. With an NPN transistor, for example, both Vi
and I; must be negative.

3.5.9 Example Program 6B: DC Current
Gain Using Fast Method

Use Program 6B in Appendix A to demonstrate the fast method of
measuring current gain of bipolar transistors. Proceed as follows:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate cables.
Note that OUTPUT HI of SMUB is connected to the base of the
DUT, and SENSE HI of SMUB is connected to the emitter.

3. Turn on the System SourceMeter instrument and allow the
unit to warm up for two hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 0B),
manually enter the code from the appendix, or import the TSP
file ‘DC_Gain_Fast.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50926

6. TInstall an NPN transistor such as a 2N5089 in the appropriate
transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.

Sense LO

Output LO

Series 2600
System
SourceMeter

Channel B
Source V, |
Measure I,

Sense HI Output HI

Output LO
Series 2600
System
I SourceMeter
Channel A
Source I
Output HI
Test
E " Fixture

Figure 3-6. Test configuration for fast current gain tests

3-8

SECTION 3
Bipolar Transistor Tests

10.

11.

To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘DC_Gain_Search_Fast(). This can be done by typing
the text DC_ Gain Search Fast()’ after the active
prompt in the Instrument Console line of TSB.

In the program ‘DC_Gain_Search Fast.tsp’, the function
DC _Gain _Search Fast(vcesource, istart,
istop, isteps) is created.

* vcesource represents the voltage value on the
collector-emitter of the transistor

* istart represents the start value for the base current
sweep

* istop represents the stop value for the base current
sweep

* isteps represents the number of steps in the base
current sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in
the function call. As an example, if you wanted to have the
collector-emitter voltage (V¢;) be 2.5V, the base current sweep
start value at 10nA, the base current sweep stop value at
100nA, and the number of steps to be 10, you would send
DC _Gain _Search Fast(2.5,10E-9, 100E-9,
10) to the instrument.

The sources will be enabled, and the collector current of the
device will be measured.

Once the sweep has been completed, the data (I, I;, and R)
will be presented in the Instrument Console window of TSB.
Note that the program reverses the polarity of the emitter cur-
rents in order to display true polarity.

3.5.10 Program 6B Description

Initially, both units are returned to default conditions. SMUB,
which sources V,; and measures I, is set up as follows:

Source V
1mA compliance, autorange measure
Remote sense

vcesource: =10V

SMUA, which sources I, is configured as follows:

Source I

Local sense

¢ 11V compliance, autorange
* istart:—-IlmA

* istop:-10mA

* isteps: 10

* 10ms delay

e Staircase sweep mode

Both SMU outputs are then zeroed and enabled. Next, SMUB
sources V; and SMUA begins the current sweep on the emitter
current (I;) from istart to istop in isteps. At each point in the
sweep, SMUB measures the base current (I). Upon completion of
the sweep, the current gain (R) is calculated and the data (I, I,
and R) is printed to the Instrument Console of the TSB.

3.5.11 Example Program 7:
AC Current Gain

NOTE
For the sake of simplicity, this program does not include
the iterative search algorithm included in Program 0A.
To test at a specific IC value, first use Program 6A to
determine the base current at that target value, and
enter I values slightly higher and lower when prompted
to do so in Program 7.

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 7),
manually enter the code from the appendix, or import the TSP
file AC_Gain_.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50931.

6. Install a small-signal NPN silicon transistor such as a 2N5089
in the appropriate transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.

39

SECTION 3
Bipolar Transistor Tests

To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘AC _ Gain(). This can be done by typing the text
‘AC _Gain()’ after the active prompt in the Instrument
Console line of TSB.

9. In the program AC Gain.tsp’, the function AC Gain
(vcesource, ibl, ib2) iscreated.

* vcesource represents the voltage value on the
collector-emitter of the transistor

* 1ibl represents the first value for the base current
* 1ib2 represents the second value for the base current

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in
the function call. As an example, if you wanted to have the
collector-emitter voltage (V) be 2.5V, the base current initial
value at 100nA, and the base current second value at 200nA
youwould send AC _ Gain(2.5,100E-9, 200E-9) to the
instrument.

Keep the two values as close together as possible so that the
device remains in its linear operating region. A change in I, of
about 20% from one value to another would be a good starting
point.

10. The sources will be zeroed and then enabled. The program
will execute a two-point source and measure process.

11. Once the measurements have completed, the data (I, I,
Iy, Iy, and B) will be presented in the Instrument Console
window of TSB.

3.5.13 Typical Program 7 Results

The differential current gain obtained for a given sample of a
2N5089 NPN transistor would typically be about the same as the
DC current gain—about 500. Again, values could range from a low
of 300 to a high of 800 or so.

3.5.14 Program 7 Description

After both units are returned to default conditions, SMUB is set
up as follows:

¢ Source I
* IV compliance, 1.1V range

* Local sense

SMUA is configured as follows:

3-10

* Source V
* Local sense

* 100mA compliance

The collector-emitter voltage (V) will then be set. Then, the base
current will be set to the Iy, value and the collector current (1)
will be measured. Next, the base current will be set to the Iy,
value and I, will be measured. The AC current gain of the device
will then be calculated and printed to the Instrument Console
window of TSB.

3.5.15 Modifying Program 7

As with the DC current gain, AC current gain is often tested at
specific values of I.. Again, a search algorithm similar to the one
in Program 6A could be added to the program. Such an algorithm
would allow you to enter the desired collector current values, and
it would then perform an iterative search to determine automati-
cally the two correct base current values that would result in the
desired collector currents.

3.6 Transistor Leakage Current

Leakage currents, such as I, (collector-base, emitter open) and
Icro (collector-emitter, base open) can be tested using a single-
channel System SourceMeter instrument. The following para-
graphs discuss I, tests and also include an example program for
making such tests.

3.6.1 Test Configuration

Figure 3-7 shows the basic test configuration for performing Iz,
tests. The SMU sources the collector-emitter voltage (Vo) and
the instrument also measures Iz, Often, Vi, is swept across
the desired range of values, and the resulting .., values can be
plotted against Vg, as is the case with the example program
included in this section.

The base of the transistor should be left open. The same general
circuit configuration can be used to measure I; connect the
SMU between the collector and base, and leave the emitter open
instead.

Breakdown tests can also be performed using the same I, circuit
setup. In this case, the SMU is used to source I and measured
the breakdown voltage (V) in order to control device power at
breakdown better.

SECTION 3
Bipolar Transistor Tests

ICEO

Transistor
Under Test

Leave Base open

Test
Fixture

Series 2600
System
SourceMeter

Channel A
Vv Source V.,
Measure I,

Output LO

Figure 3-7. Configuration for I, tests

3.6.2 Example Program 8: I, Test

Use Program 8 to run I, tests on bipolar transistors. Follow
these steps to run the program:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 8),
manually enter the code from the appendix, or import the TSP
file ‘Iceo.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: http://www.
keithley.com/data?asset=50917.

6. Install a small-signal NPN silicon transistor such as a 2N3904
in the appropriate transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file’. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘Iceo (). This can be done by typing the text ‘Tceo ()’

after the active prompt in the Instrument Console line
of TSB.

9. In the program ‘Iceo.tsp’, the function Iceo(vstart,
vstop, vsteps) is created.

* vstart represents the initial voltage value in the V,; sweep
* vstop represents the final voltage value in the V. sweep
* vsteps represents the number of steps in the sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the start voltage
be 1V, the stop value be 11V, and the number of steps be 20,
you would send Iceo (1, 11, 20) to the instrument.

10. The sources will be zeroed and then enabled. The program
will execute a voltage sweep on the collector-emitter and
measure the collector-emitter current (I¢;) at each point.

11. Once the measurements have completed, the data (V¢ and I)
will be presented in the Instrument Console window of TSB.

3.6.3 Typical Program 8 Results

Figure 3-8 shows an example I, vs. V¢, plot generated by
Program 8. The device used for this example was a 2N3904 NPN
transistor.

3.6.4 Program 8 Description

The instrument is returned to default conditions. SMUA, which
sweeps Vero and measures I, is set up as follows:

¢ Source V
* Local sense
¢ 10mA compliance, autorange measure

* 1 NPLC Line cycle integration

3-11

SECTION 3
Bipolar Transistor Tests

ICEO vs.V

CEO

(2N3904)

3.50E-10

3.00E-10

2.50E-10

2.00E-10

1.50E-10

I (Amps)

1.00E-10

5.00E-11

0.00E+00 t ;

CEO

0 2 4

vCEO

Figure 3-8. Program 8 results: I, vs. Vo

e vstart: 0V
e vstop: 10V
¢ vsteps: 100

After setup, the output is zeroed and enabled. A linear voltage
sweep from the start to the stop value is performed. At each step,
the collector-emitter current (I.y) is measured.

Upon sweep completion, the output is disabled and the data is
written to the Instrument Console window of TSB.

3-12

6 8 10

(Volts)

3.6.5 Modifying Program 8

For different sweep values, simply modify the vstart, vstop,
and vstep values and source range parameter as appropriate.

In order to speed up the test procedure, you may wish to use
a faster integration period. Simply change the 1 _nplc value.
Note, however, that changing this parameter may result in unac-
ceptable reading noise.

Section 4
FET Tests

4.1 Introduction

FET tests discussed in this section include tests to generate
common-source characteristic curves, and transconductance
tests. Example programs for each of these applications are also
included.

4.2 Instrument Connections

Two SMU channels are required for the tests and a dual-channel
instrument from the Series 2600 System SourceMeter line is rec-
ommended. A test fixture with safety interlock is recommended
for connections to the FET under test.

For general-purpose measurements with most of the Series 2600
instruments, Model 2600-BAN cables are recommended. For low
current tests (<1mA) or when using a low current instrument like
the Model 2636, Model 7078-TRX-3 triax cables are recommended
to make instrument-to-test fixture connections.

WARNING

Lethal voltages may be exposed when the test fix-
ture lid is open. To avoid a possible shock hazard,
a safety interlock circuit must be connected before
use. Connect the fixture screw to safety earth
ground using #18 AWG minimum wire before use.
Turn off all power before connecting or discon-
necting wires or cables

NOTES
Remote sensing connections are recommended for
optimum accuracy. See paragraph 1.2.2 for details.

If measurement noise is a problem, or for critical, low
level applications, use shielded cable for all signal
connections.

4.3 Common-Source
Characteristics

One of the more common FET tests involving family of curves
is common-source characteristics. Such tests are very similar to
the common-emitter characteristic tests outlined earlier except,

of course, for the fact that an FET rather than a bipolar transistor
is involved.

Test data for common-source characteristics are obtained by
sweeping the gate-source voltage (V) across the desired range of
values at specific increments. At each Vi value, the drain-source
voltage (Vy) is swept through the required range, once again at
the desired increments. At each V value, the drain current (Ip)
is measured. Plots can then be made from this data to show I, vs.
Vps with one curve for each value of V.

4.3.1 Test Configuration

Figure 4-1 shows the test configuration for the common-source
tests. SMUB sweeps V;, while SMUA sweeps Vi, and the instru-
ment also measures I, For this programming example, a small-
signal, N-channel FET such as a SD210 is recommended.

4.3.2 Example Program 9:
Common-Source Characteristics

Program 9 outlines general programming techniques for meas-
uring common-source characteristics. Follow these steps to use
this program:

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 9),
manually enter the code from the appendix, or import the TSP
file ‘FET _Comm_Source.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bitp:/jwwuw.
keithley.com/dataZasset=50921.

4-1

SECTION 4
FET Tests

FET

<= |

Under Test

N

\ Output HI
v Test ies 2
Output HI \é ED/ > [fFisue N System

. Vs~ SourceMeter
Seglest 2600 (Channel A
ystem
SourceMeter v iﬂweeps VDIS,
Channel B easures |,
Sweeps V¢ Output LO
Output LO

Vv

Figure 4-1. Test configuration for common-source tests

4-2

Install an N-channel FET such as an SD210 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion FET _ Comm _ Source ()’. This can be done by typing
the text FET _ Comm _ Source ()’ after the active prompt
in the Instrument Console line of TSB.

In the program ‘FET_Comm_Source.tsp’, the function FET _
Comm _ Source(vgsstart, vgsstop, vgssteps,
vdsstart, vdsstop, vdssteps) is created.

* vgsstart represents the initial voltage value in the
gate-source Vg sweep

* vgsstop represents the final voltage value in the gate-
source Vg sweep

* vgssteps represents the number of steps in the sweep

* vdsstart represents the initial voltage value in the
drain-source Vs sweep

¢ vdsstop represents the final voltage value in the drain-
source Vpg sweep

* vdssteps represents the number of steps in the sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in

the function call. As an example, if you wanted to have the
start voltages for Vs and Vs sweeps be 1V, the stop value
be 11V, and the number of steps be 20, you would send
FET Comm _Source(l, 11, 20, 1, 11, 20) to
the instrument.

10. The sources will be zeroed and then enabled. The program
will execute a sweep of Vg values between 0V and 10V using
2V steps. At each Vg step, Vs will be stepped between 0V
and 10V at 0.1V increments. At each increment, I;, will be
measured.

11. Once the measurements have been completed, the data (Vg,
Vps, and Ipg) will be presented in the Instrument Console
window of TSB.

4.3.3 Typical Program 9 Results

Figure 4-2 shows a typical plot generated by example Program 9.
A 2N4392 N-channel JFET was used to generate these curves.

4.3.4 Program 9 Description

The unit is returned to default conditions. Next, SMUB, which
sweeps Vs, is programmed as follows:

* SourceV

* 1mA compliance, ImA range

* Local sense

* vgsstart: OV

* vgsstop: 10V

* vgssteps:5

SMUA, which sweeps Vs and measures I, is configured as
follows:

SECTION 4
FET Tests

Common-Source Characteristics (SD210)

1.00E-01
8.00E-02
Vs =10V
@ 6.00E-02
£
E V=75V
S
_8 4.00E-02
V=5V
2.00E-02
o~ Vs =2.5V
0.00E+00 T T T T T T T T Vs =0V
0 1 2 3 4 6 7 8 9 10

V,, (Volts)

Figure 4-2. Program 9 results: Common-source characteristics

* Source V

¢ Local sensing

* 100mA compliance, autorange measure
* vdsstart: 0V

* vdsstop: 10V

* vdssteps: 100

* 1 NPLC Line cycle integration

Following setup of both units, the outputs are zeroed and
enabled. The first gate-source bias (V) source value is applied
and the drain-source voltage (Vps) sweep is started. At each point
in the Vpq sweep, the drain current (Ip,) is measured. When the
final Vs value is reached, the drain-source voltage is returned
to 0V, the gate-source voltage (V) is incremented, and the Vi
sweep begins again.

Upon reaching the final V¢ value, the outputs are zeroed, dis-
abled, and the data (Vig, Vp, and 1) is printed to the Instrument
Console Window of TSB, where it can be copied and pasted to a
spreadsheet for graphing.

4.3.5 Modifying Program 9

For other Vg values, simply modify the vgsstart, vgsstop,
and vgssteps variables as required.

Similarly, Vs can be swept over a different range by changing the
vdsstart, vdsstop, and vdsstep variables to the desired values.

4.4 Transconductance Tests

The forward transconductance (g;) of an FET is usually meas-
ured at a specific frequency (for example, 1kHz). Such a test can
be simulated with DC values by using as small an incremental
change in DC parameters as possible. For example, assume that
we source two gate-source voltages, Vi, and Vi, and measure
two resulting drain currents, I, and Ip,. The forward transcon-
ductance can then be approximated as follows:

8 = AID
AV
where: g, = forward transconductance (8)
Ap =Ip=Iy

AVgs = Vg2 = Vast

Two common plots involving g, include g vs. Vs and g vs. I,
The programming examples included in this section demonstrate
how to generate g, vs. Vs and g, vs. I, plots.

4.4.1 Test Configuration

Figure 4-3 shows the general test configuration for transconduc-
tance tests. SMUB sweeps Vg, while SMUA sources Vs and also
measures I;,. g, values are computed from incremental changes in
I, and V. Note that an N-channel FET such as a SD210 is recom-
mended for use with the example programs that follow.

4-3

SECTION 4
FET Tests

REN e
Under Test B
\ \ Output HI
v Taak Series 2600
Output HI \{ >/ S Fixture System
. Vs~ SourceMeter
Seglest 2600 (Channel A
ystem
SourceMeter \" i/(l)urces VDls,
Channel B easures |
Sweeps V¢ Output LO
Output LO

Figure 4-3. Configuration for transductance tests

4.4.2 Example Program 10:

Transconductance vs.
Gate Voltage Test

Use Program 10 to generate a typical g vs. Vi plot as well as a
g vs. Ip.

1.

With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

Connect the test fixture to both units using appropriate
cables.

Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 10),
manually enter the code from the appendix, or import the TSP
file ‘Transconductance.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/datazasset=50910.

Install an N-channel FET such as an SD210 in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB, and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “I'SP Program-

4-4

ming Fundamentals” section of the Series 2600 Reference
Manual.

8. Once the code has been placed in the instrument run-time

memory, we can run it at any time simply by calling the func-
tion ‘Transconductance ()’ This can be done by typing
the text ‘Transconductance ()’ after the active prompt in
the Instrument Console line of TSB.

9. In the program ‘Transconductance.tsp’, the function

Transconductance (vgsstart, vgsstop,
vgssteps, vdsbias) is created.

* vgsstart represents the initial voltage value in the
gate-source Vg sweep

* vgsstop represents the final voltage value in the gate-
source Vg sweep

* vgssteps represents the number of steps in the sweep

* vdsbias represents the voltage value applied to the
drain-source terminal of the FET

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the start volt-
ages for Vg sweeps be 1V, the stop value be 11V, the number
of steps be 20, and the V4 value as 5V, you would send
Transconductance(l, 11, 20, 5) to the instrument.

10. The sources will be zeroed and then enabled. The instrument

will apply Vps and execute a sweep of Vi values between
0V and 5V using 100 steps. At each increment, I;, will be
measured.

SECTION 4
FET Tests

11. Once the measurements have completed, the data (Vis, Vys, I,
and g;) will be presented in the Instrument Console window
of TSB.

4.4.3 Typical Program 10 Results

Figure 4-4 shows a typical g vs. V4 plot as generated by the
example program. Again, an SD210 N-channel FET was used for
the example plot.

Figure 4-5 shows a typical g vs. I, plot generated by the example
program.

4.4.4 Program 10 Description

The instrument is returned to default conditions. SMUB, which
sweeps Vg, is programmed as follows:

e Source V

* 1mA compliance, autorange

* Local sense

* vgsstart: OV

* vgsstop: 5V

* vgssteps: 100

g, vs.V (SD210)

1.00E-02

8.00E-03

6.00E-03

g,. (Siemens)

4.00E-03

2.00E-03

0.00E-00 T T

0 1 2

V_ (Volts)

Figure 4-4. Program 10 results: Transconductance vs. Vg

g, vs. I, (SD210)

1.00E-02

8.00E-03

6.00E-03

4.00E-03

g, (Siemens)

2.00E-03

0.00E-00 T T

0.000 0.005 0.010

FV, =10V
T T
3 4 5
V, =10V
T T
0.020 0.025 0.030

1, (Amps)

Figure 4-5. Program 10 results: Transconductance vs. I,

4-5

SECTION 4
FET Tests

SMUA, which sources V;,s and measures I, is then configured in
the following manner:

¢ Source V

* Local sense

* 100mA compliance, autorange measure
* 1 NPLC Line cycle integration

* vdsbias:10V

Following setup of both units, the outputs are zeroed and
enabled. SMUA applies the V¢ bias, and SMUB begins the Vg
voltage sweep. At each step in the V5 sweep, SMUA measured
the drain current (I,). The process repeats until all points in the
sweep have been taken.

Next, we encounter the part of the program where the transcon-
ductance values are calculated. Each transconductance value is
computed from Al and AV. Finally, the data (Vi I, and g;,) is
printed to the Instrument Console of TSB. You can then copy and
paste the data to a spreadsheet to graph g vs. Vg and g vs. I,

4.5 Threshold Tests

The threshold voltage (V) is a critical parameter for FET charac-
terization, as well as process control. Basically, there are a number
of methods for determining V,, including several transconduc-
tance methods, the two-point extrapolated V; method, as well as
the V; @ I, search method. In this paragraph, we will discuss the
I, search method for finding V;, along with a self-biasing method
that takes advantage of the special capabilities of the Series 2600
System SourceMeter instruments.

FET

4.5.1 Search Method Test Configuration

Figure 4-6 shows the general test configuration for the search
method threshold voltage tests. SMUB sources Vs, while SMUA
sources Vs and also measures I, An iterative search process is
included in the program to allow you to enter a target I, value.

4.5.2 Example Program 11A: Threshold
Voltage Tests Using Search Method

Use Program 11A to perform the V;; test using the search for target
I, method.

1. With the power off, connect a dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 11A),
manually enter the code from the appendix, or import the TSP
file ‘FET Thres_Search.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50919.

6. Install an N-hannel FET such as an SD210 in the appropriate
transistor socket of the test fixture.

< |

Under Test

N

Output HI \{ >

Series 2600 Vos~

System |
SourceMeter

Channel B
SetsV_ for |V
Target |,

Output LO

N—

Output HI

Series 2600
System
SourceMeter

Channel A
Vv Sources V,
Measures |

Test

S Fixture

Output LO

Vv

Figure 4-6. Configuration for search method threshold tests

4-6

SECTION 4
FET Tests

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘FET _Thres Search()’. This can be done by
typing the text FET _ Thres _ Search()’ after the active
prompt in the Instrument Console line of TSB.

9. In the program ‘FET Thres Search.tsp’, the function FET _
Thres Search(vdssource, lowvgs, highvgs,
targetid) is created.

* vdssource represents the voltage value on the drain-
source of the transistor

* lowvgs represents the gate-source voltage low limit for
the search algorithm

* highvgs represents the gate-source voltage high limit
for the search algorithm

* targetid represents the target drain current for the
search algorithm

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in the
function call. As an example, if you wanted to have the drain-
source voltage (Vys) be 2.5V, the gate-source voltage low value
at 0.7V, the gate-source voltage high value at 1.5V, and the
target drain current at 2uA, you would send FET _ Thres
Search(2.5, 0.7, 1.5, 2E-6) to the instrument.

10. The sources will be enabled, and the collector current of
the device will be measured. The program will perform an
iterative search to determine the closest match to the target
I, (within =5%). If the search is unsuccessful, the program
will print “Iteration Level Reached”. This is an error indicating
that the search reached its limit. Recheck the connections,
DUT, and variable values to make sure they are appropriate
for the device.

11. Once the sweep has been completed, the data (I, Vi, and
Vys) will be presented in the Instrument Console window
of TSB.

4.5.3 Program 11A Description

Initially, the instrument is returned to default conditions. SMUB,
which sources Vg, is programmed as follows:

* SourceV

* 1mA compliance, autorange

* Local sense

SMUA, which sources V;,s and measures I, is then configured in
the following manner:

¢ Source V
* Local sense
¢ 100mA compliance, autorange measure

* 1 NPLC Line cycle integration

Once the SMU channels have been configured, the sources values
are programmed to 0 and the outputs are enabled. The drain-
source voltage (V) is sourced, compliance is checked with the
function Check _Comp (), and the program enters into the
binary search algorithm for the target drain current (I,)) by varying
the gate-source voltage (V) value, measuring the I, comparing it
to the target I;), and adjusting the V; value, if necessary. The itera-
tion counter is incremented each cycle through the algorithm. If
the number of iterations has been exceeded, a message to that
effect is displayed, and the program halts.

Assuming that the number of iterations has not been exceeded, the
data is displayed in the Instrument Console window of the TSB.

4.5.4 Modifying Program 11A

As written, the program sets the number of iterations to search for
target I, to 20. You can change this by adjustingthe 1~k max
variable to perform the iterative search as many times as is neces-
sary. Similarly, the allowed range for the I, target search is =5%.
Again, you can make this tolerance range as tight as necessary
by modifying the limits in line 155. Note that reducing the target
range will probably require an increase in the number of itera-
tions as well.

4.5.5 Self-bias Threshold Test
Configuration

Figure 4-7 shows the general test configuration for the self-
bias method of threshold voltage tests. SMUB sources the drain
current (assumed to be the same as the source current), and it
also measures the threshold voltage, V;. SMUA sources V. This
arrangement allows very rapid threshold voltage measurement
(milliseconds per reading) at very low currents, and it can be used
with both enhancement-mode and depletion-mode FETs. Note
that the high impedance sensing circuits and the floating capabili-
ties of the Series 2600 System SourceMeter instruments are key
characteristics that allow this special configuration to be used.

SECTION 4
FET Tests

WARNING

When a System SourceMeter instrument is pro-
grammed for remote sensing, hazardous voltage
may be present on the SENSE and OUTPUT termi-
nals when the unit is in operate regardless of the
programmed voltage or current. To avoid a pos-
sible shock hazard, always turn off power before
connecting or disconnecting cables to the Source-
Measure Unit or the associated test fixture.

NOTE
Entered values for both Vs and I, are adjusted to the
reverse polarity because of the connection configura-
tion used. For example, for an N-channel FET, both V/y
and ;) must be negative.

As an example, entering a Vs of 5V will result in -5V
actually being applied at the output.

These values will result in proper biasing of the
DUT. Also, the sign of the measured V; value will be
reversed.

4.5.6 Example Program 11B: Self-bias
Threshold Voltage Tests

Use Program 11B to perform the self-bias threshold voltage t

est.

1. With the power off, connect a dual-channel System Source-

Meter instrument to the computer’s IEEE-488 interface.

EEll
Under Test

. Connect the test fixture to both units using appropriate cables.

Note that OUTPUT HI of SMUA is connected to the OUTPUT
LO of SMUB, while SENSE HI of SMUA is connected to the
OUTPUT HI of SMUB.

. Turn on the instrument and allow the unit to warm up for two

hours for rated accuracy.

. Turn on the computer and start Test Script Builder (TSB). Once

the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

. You can simply copy and paste the code from Appendix A in

this guide into the TSB script editing window (Program 11B),
manually enter the code from the appendix, or import the TSP
file FET Thres Fast.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading from bttp:/jwwuw.
keithley.com/data‘asset=50920.

. Install an NPN FET such as a SD210 in the appropriate tran-

sistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest

method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

G

)

Test
Fixture

Output HI

Series 2600
System
SourceMeter

Channel B
Sources I, (=1,) v
Measures V.

Output LO

Sense HI

Sense LO Output LO

Series 2600
System
|:V:| SourceMeter
Channel A
Sources V

Output HI

Vv

Figure 4-7. Configuration for self-bias threshold tests

4-8

SECTION 4
FET Tests

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘FET Thres Fast()’ This can be done by typing the text
‘FET _Thres Fast()’ after the active prompt in the
Instrument Console line of TSB.

9. Inthe program ‘FET Thres Fast().tsp’, the function FET _
Thres Fast(vdssource, istart, istop,
isteps) is created.

* vdssource represents the voltage value on the drain-
source of the transistor

* istart represents the start value for the drain current
sweep

* 1istop represents the stop value for the drain current
sweep

* isteps represents the number of steps in the current
sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each variable
value by simply sending a number that is in-range in the func-
tion call. As an example, if you wanted to have the drain-source
voltage (Vy) be 0.25V, the drain current sweep start value at
0.20uA, the drain current sweep stop value at 2uA, and the
number of steps be 15, you would send FET _ Thres _
Fast(0.25, 200E-9, 2E-6, 15) to the instrument.

10. The sources will be enabled, and the collector current of the
device will be measured.

11. Once the sweep has been completed, the data (Vyy, Vy, and I)
will be presented in the Instrument Console window of TSB.
Note that the program reverses the polarity of the emitter cur-
rents in order to display true polarity.

4.5.7 Program 11B Description

Initially, the instrument is returned to default conditions. Next,
SMUB, which sources I;, and measures V;, is programmed as
follows:

¢ Source I

* 11V compliance, autorange
* Local sense

¢ 1 NPLC integration rate

* istart:05uA

* istop: 1uA

* isteps: 10

Next, SMUA, which sources Vy, is configured in the following
manner:

¢ Source V

* Remote sensing

* 100mA compliance, autorange

* vdssource: 0.5V

Once the SMU channels have been configured, the sources values
are programmed to 0 and the outputs are enabled. The drain-
source voltage (Vps) is sourced and the drain current (Ip) is

swept. At each point in the sweep, the threshold voltage (V) is
measured.

The data is displayed in the Instrument Console window of the
TSB.

Note that both I, and V; values are corrected for proper polarity.

4.5.8 Modifying Program 11B

As written, the program tests for threshold voltages at 10 values
of I, between 0.5uA and 1uA in 10 increments. These values can
be changed to the required values simply by modifying the cor-
responding variables in the program.

4-9

Section 5
Using Substrate Bias

5.1 Introduction

To this point in this guide, we have focused on performing tests on
devices that do not require substrate bias. Because many devices,
especially those in complex packages, do require some form of
substrate bias, our discussion would not be complete without dis-
cussing methods for applying and programming substrate bias.

In the following paragraphs, we will discuss applying substrate bias
by adding another Series 2600 System SourceMeter instrument.

5.2 Substrate Bias Instrument
Connections

WARNING
Interlock circuits must be connected before use.
Connect the fixture ground to safety earth ground
using #18 AWG minimum wire before use. Turn off
all power before connecting or disconnecting wires
or cables.

5.2.1 Source-Measure Unit Substrate
Bias Connections and Setup

Figure 5-1 shows test connections when using two Series 2600
System SourceMeter instruments because the tests outlined in the
following sections require three SMUs. Two SMUs supply the same
functions as outlined earlier in this guide, and a third SMU is used
to apply substrate bias. In the past, this would have required con-
necting and coordinating three separate instruments, each with
only one SMU.

To simplify hardware integration, the Keithley Series 2600 System
SourceMeter instruments are equipped with a few features that
make the task of multi-channel testing much easier. For example,
we can use a dual-channel instrument such as the Keithley Model
2602, 2612, or 2636 and a single-channel Instrument such as the
Model 2601, 2611, or 2635. Therefore, we need only two instru-
ments to perform the test. All of the following programs will also
work using two dual-channel instruments with no modification.

For instrument-to-instrument communication, Keithley’s Series
2600 System SourceMeter instruments employ an expansion

interfaceknownas TSP-Link™ interface. TSP-Linkallows expanding
test systems to include up to 16 TSP-Link enabled instruments.

In a TSP-Link-enabled system, one of the nodes (instruments) is
the master, which is generally denoted as Node 1, while the other
nodes in the system are slaves. One GPIB connection is required
to link the controlling PC and the master instrument. All other
master/slave connections require a simple TSP-Link connection
using a crossover Ethernet cable. Additional instruments can
be connected as slaves by simply connecting each slave to one
another serially using additional crossover Ethernet cables and
configuring each instrument for use as a TSP-Link node.

More information on TSP-Link features can be found in the Series
2600 System SourceMeter Reference Manual.

CPU with
GPIB

GPIB Cable

Series 2600
System
SourceMeter

Node 1: Master

Series 2600
System
SourceMeter

Node 2: Slave

Figure 5-1. TSP-Link connections for two instruments

5-1

SECTION 5
Using Substrate Bias

A test fixture with appropriate shielding and safety interlock
mechanisms is recommended for test connections, along with
Model 7078-TRX-3 triax cables for low current measurements.
Note that the connecting cables to the second instrument, assume
that local sensing will be used even though that may not be the
situation in many cases.

5.2.2 Voltage Source Substrate Bias
Connections

Figure 5-2 shows bias connections using a single-channel Model
2635 Low Current System SourceMeter instrument for substrate
bias connections. Two additional SMU channels are added using
a dual-channel Model 2602 System SourceMeter instrument. Note
that remote sensing is not used in this application; remote sensing
could be added by connecting the sense terminals of the Model
2635 to the sense connections on the test fixture and adding addi-
tional remote sense commands to the program.

NOTES

Remote sensing connections are recommended for
optimum accuracy. See paragraph 1.2.2 for details.

CPU with
GPIB

Model 2602
Dual-Channel
System
SourceMeter

Node 1: Master

Model 2635
Low Current
System
SourceMeter

Node 2: Slave

Figure 5-2. TSP-Link instrument connections

5-2

If measurement noise is a problem or for critical, low
level applications, use shielded cable for all signal
connections.

5.3 Source-Measure Unit
Substrate Biasing

The following paragraphs discuss using three SMU channels to
provide substrate biasing: a dual-channel instrument, such as a
Model 2602 or 2636, and a single-channel instrument, such as
a 2601 or 2635. All of the example programs will work with two
dual-channel instruments with no modification.

In the first example, the substrate current () is measured as the
gate-source voltage (V) is swept across the desired range. The
program generates a plot of I, vs. V. In the second example, the
third SMU channel provides substrate bias for common-source
characteristic tests.

5.3.1 Program 12 Test Configuration

Figure 5-3 shows the test configuration for Program 12. SMUB of
Node 1 is used to sweep Vs, while SMUA of Node 1 sources V.
SMUA of Node 2 applies a user-defined substrate bias (V) to the
device under test: it also measures the substrate current ().

5.3.2 Example Program 12: Substrate
Current vs. Gate-Source Voltage

Program 12 demonstrates methods to generate an Ig; vs. Vi plot.
Follow these steps to use this program.

1. With the power off, connect the dual-channel Instrument to
the computer’s IEEE-488 interface. Connect the single-channel
Instrument to the dual-channel master using a crossover Eth-
ernet cable.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instruments and allow the units to warm up for
two hours for rated accuracy.

4. Configure the TSP-Link communications for each instrument.

Slave: A single-channel instrument such as the Model 2601,
2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the
Series 2600 instruments used have firmware Revision 1.4.0
or later installed.)

SECTION 5
Using Substrate Bias

FET .
Under Test 2
\ Test
o Fixture
| 'Ei\
v
Vos~ Vos
Output HI Output HI Output HI
Series 2600 Series 2600 Series 2600
System | System System
SourceMeter SourceMeter SourceMeter
Channel B Channel A Channel A
Node 1 v Node 2 Node 1
Sweeps V¢ Sources V, Sources V
Measures |, Measures |
Output LO
Output LO Output LO
Figure 5-3. Program 12 test configuration
3. Select the TSPLINK CFG menu. (If the Series 2600 instru- 6. You can simply copy and paste the code from Appendix A in

ments used have firmware Revision 1.4.0 or later installed,
the menu name should be TSPLINK.)

4. Select the NODE menu.
5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602,
2612, or 26306.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if
the Series 2600 instruments used have firmware Revision
1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the master and press
ENTER.

6. Select the TSPLINK_CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

. Turn on the computer and start Test Script Builder (TSB).
Once the program has started, open a session by connecting
to the master instrument. For details on how to use TSB, see
the Series 2600 Reference Manual.

10.

this guide into the TSB script editing window (Program 12),
manually enter the code from the appendix, or import the TSP
file ‘FET Isb_Vgs.tsp’ after downloading it to your PC.

If your computer is currently connected to the Internet, you
can click on the following link to begin downloading: http://
wwuw.keithley.com/data?asset=50964.

Install an NPN FET such as a SD210 in the appropriate tran-
sistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “ISP Program-
ming Fundamentals” section of the Series 2600 Reference
Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘FET Isb Vgs(). This can be done by typing the text
‘FET _Isb _Vgs()’ after the active prompt in the Instru-
ment Console line of TSB.

In the program ‘FET Isb Vgs().tsp', the function FET _ Isb
Vgs (vdssource, vsbsource,vgsstart,vgsstop,
vgssteps) is created.

* vdssource represents the voltage value on the drain-
source of the transistor

* vsbsource represents the voltage value on the
substrate-source of the transistor

5-3

SECTION 5
Using Substrate Bias

* vgsstart represents the start value for the gate-source
voltage sweep

* vgsstop represents the stop value for the gate-source
voltage sweep

* vgssteps represents the number of steps in the sweep

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in range in the
function call. As an example, if you wanted the drain-source
voltage (Vps) to be 2V, substrate-source (V) to be —2V, the
gate-source (V;s) voltage sweep start value at 1V, the gate-
source sweep stop value at 12V, and the number of steps to
be 15, you would send FET _Isb Vgs(2, -2, 1, 12,
15) to the instrument.

11. The sources will be enabled, and the gate-source voltage
sweep will be executed.

12. Once the sweep has been completed, the data (I, Vi, and L)
will be presented in the Instrument Console window of TSB.

5.3.3 Typical Program 12 Results

Figure 5-4 shows a typical plot generated by example Program 12
using an SD210 MOSFET.

5.3.4 Program 12 Description

After the SMUs are returned to default conditions, Node 1 SMUB,
which sweeps Vg, is configured as follows:

* SourceV

* 1uA compliance, autorange

* Local sense

* vgsstart: OV
* vgsstop: 10V
* vgssteps: 10

Next, Node 1 SMUA, which sources Vy, is set up to operate in the
following manner:

¢ Source V

¢ Local sensing

¢ 100mA compliance, autorange
* vdssource: 1V

Finally, Node 2 SMUA, which sources Vg, and measures I, is pro-
grammed as follows:

¢ Source V

* Local sensing

* 1 compliance, autorange measure

¢ 1 NPLC Line cycle integration

After both instruments are set up, the outputs are zeroed and
enabled. The bias values Vg and Vg are applied, then the Vg

sweep begins. At each point in the sweep, the drain current (I)
and substrate leakage (I;) are measured.

After the sweep is complete, the data (I, Vi, and L) is printed to
the Instrument Console of TSB.

Iy, vs. Vo

0.00E+00

—5.00E-13 1

—1.00E-12

—1.50E-12 4

I, (Amps)

—2.00E-12

—2.50E-12

—-3.00E-12

~3.50E-12 ; ;

\ Series |

0 2 4

Figure 5-4. Program 12 typical results: Ig; vs. Vg

5-4

6 8 10 12
V, (Volts)

SECTION 5
Using Substrate Bias

5.3.5 Modifying Program 12

For different sweeps, the variables for Vi start, V4 stop, and
Vg5 step values can be changed as required. For different sweep
lengths, array size and loop counter values must be adjusted
accordingly. You can also change the Vg value, if desired, by
modifying that parameter accordingly.

5.3.6 Program 13 Test Configuration

Figure 5-5 shows the test configuration for Program 13. Unit #1
is used to sweep Vg; Unit #2 sweeps V;,s and measures I;,. Unit
#3 applies a user-defined substrate bias to the device under test.
Common source characteristics are generated by data taken when
the program is run.

5.3.7 Example Program 13:
Common-Source Characteristics
with Source-Measure Unit
Substrate Bias

Program 13 demonstrates common-source characteristic test
programming with substrate bias. Follow these steps to use this
program.

1. With the power off, connect the dual-channel SourceMeter
instrument to the IEEE-488 interface of the computer. Con-
nect the single-channel SourceMeter instrument to the dual-
channel master using a crossover Ethernet cable.

2. Connect the test fixture to both units using appropriate

3. Turn on the instruments and allow the units to warm up for
two hours for rated accuracy.

4. Configure the TSP-Link communications for each instrument.

Slave: A single-channel instrument such as the Model 2601,
2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the
Series 2600 instruments used have firmware Revision 1.4.0
or later installed.)

3. Select the TSPLINK _CFG menu. (If the Series 2600 instru-
ments used have firmware Revision 1.4.0 or later installed,
the menu name should be TSPLINK.)

4. Select the NODE menu.
5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602,
2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if
the Series 2600 instruments used have firmware Revision
1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

4. Select the NODE menu.
5. Set the NODE number to 1 for the master and press

cables. ENTER.
EE} e]
Under Test 2
Test
Fixture
(] 'E\\
i
Vos ~> VDS
Output HI Output HI Output HI
Series 2600 Series 2600 Series 2600
System | I System System
SourceMeter SourceMeter SourceMeter
Channel B Channel A Channel A
Node 1 Y v Node 2 Node 1
Sweeps V, Sources Sweeps V,
P> os Substrate Bias Measures [;Z
Output LO
Output LO Output LO

Vv

Figure 5-5. Program 13 test configuration

SECTION 5

Using Substrate Bias

6. Select the TSPLINK CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

5. Turn on the computer and start Test Script Builder (TSB).
Once the program has started, open a session by connecting
to the master instrument. For details on how to use TSB, see
the Series 2600 Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 13),
manually enter the code from the appendix, or import the
TSP file ‘FET Comm_Source Vsb.tsp’ after downloading it to
your PC.

If your computer is currently connected to the Internet, click
on the following link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50921.

. Install an NPN FET such as an SD210 in the appropriate tran-
sistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB and
select ‘Run as TSP file’. This will compile the code and place
it in the volatile run-time memory of the instrument. To store
the program in non-volatile memory, see the “I'SP Program-
ming Fundamentals” section of the Series 2600 Reference
Manual.

. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the

function ‘FET Comm_Source Vsb(). This can be done by
typing the text ‘FET _ Comm _ Source _ Vsb()’ after the
active prompt in the Instrument Console line of TSB.

. In the program ‘FET Comm_Source Vsb().tsp’, the function

FET Comm _Source _Vsb(vgsstart, vgsstop,
vgssteps, vdsstart, vdsstop, vdssteps,
vsbsource) is created.

* vgsstart represents the start value for the gate-source
voltage sweep

* vgsstop represents the stop value for the gate-source
voltage sweep

* vgssteps represents the number of steps in the sweep

* vdsstart represents the start value for the drain-source
voltage sweep

¢ vdsstop represents the stop value for the drain-source
voltage sweep

* vdssteps represents the number of steps in the sweep
¢ vsbsource represents the substrate bias voltage

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in the
function call. As an example, if you wanted to have the gate-
source (Vgs) voltage sweep start value at 1V, the gate-source
sweep stop value at 12V and the number of steps to be 10,
the drain-source (Vps) voltage sweep start value at 1V, the
drain-source sweep stop value at 12V and the number of steps
to be 80, and the substrate bias to be -2V, you would send

Common-Source Characteristics
with Substrate Bias (SD210)

1.00E-01

8.00E-02

6.00E-02

1,s (Amps)

4.00E-02

2.00E-02

0.00E+00 ~fi—r

0 1 2 3] 4

V,, (Volts)

V =10V
V=75V
Vg =5V
Vi, = 2050
————t V=0V
6 7/ 8 9 10 5

Figure 5-6. Program 13 typical results: Common-source characteristics with substrate bias

5-6

SECTION 5
Using Substrate Bias

FET Comm _Source Vsb(1, 12, 10, 1, 12,
80, -2) to the instrument.

10. The sources will be enabled, and the substrate bias is applied,
the gate-source voltage value is applied, and the drain-source
sweep is executed. The gate-source voltage value is then incre-
mented and the drain-source sweep is re-run.

11. Once the gate-source sweep has been completed, the data
(Vss, Ves, Vs, and L) will be presented in the Instrument
Console window of TSB.

5.3.8 Typical Program 13 Results

Figure 5-6 shows a typical plot generated by Example
Program 13.

5.3.9 Program 13 Description

Both instruments are returned to default conditions. Node 1
SMUB, which sweeps Vg, is configured as follows:

* Source V

* 1mA compliance, autorange

* Local sense

* vgsstart: 0V

* vgsstop: 10V

* vgssteps: 5

Next, Node 1 SMUA, which sweeps Vs and measures I;,, is set up
to operate in the following manner:

* Source V

* Local sensing

* 100mA compliance, autorange measure

* 1 NPLC Line cycle integration

* vdsstart: 0V

* vdsstop: 10V

¢ vdssteps: 100

Finally, Node 2 SMUA, which provides substrate bias, is pro-
grammed as follows:

* SourceV

* Local sensing

* 10mA compliance, autorange measure

Both instruments are returned to default conditions; the sources
are zeroed and enabled. The substrate bias (V) and gate-source
(Vgs) are applied and the program enters the main program loop
to perform five I;, vs. Vs sweeps, one for each of five V4 values.
Node 1 SMUA then cycles through its sweep list, setting V;,4 to the

required values, and measuring I, at each step along the way. The
program then loops back for the next sweep until all five sweeps
have been performed.

Next, all three SMU outputs are zeroed and disabled. Finally, the
data is written to the Instrument Console of the TSB.

5.3.10 Modifying Program 13

For different sweeps, the Vg start, Vi stop, Vi steps, Vpg start,
Vps stop, and Vg steps values can be changed as required. For
different sweep lengths, array size and loop counter values must
be adjusted accordingly.

5.4 BIJT Substrate Biasing

The following paragraphs discuss using one dual-channel and
one single-channel Series 2600 System SourceMeter instrument
to perform tests on a four-terminal device, such as a BJT, with
substrate bias. The example shown in this section is a modified
version of the common-emitter BJT test presented previously in
the guide.

5.4.1 Program 14 Test Configuration

Figure 5-7 shows the test configuration for Program 14. Node 1
SMUB is used to sweep I, while Node 1 SMUA sweeps V; and
measures I.. Node 2 SMUA applies the substrate bias (V) to the
device under test.

5.4.2 Example Program 14: Common-
Emitter Characteristics with a
Substrate Bias

Program 14 demonstrates common-emitter characteristic test pro-
gramming with substrate bias. Proceed as follows:

1. With the power off, connect the dual-channel System Source-
Meter instrument to the computer’s IEEE-488 interface. Con-
nect the single-channel System SourceMeter instrument to the
dual-channel master using a crossover Ethernet cable.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instruments and allow the units to warm up for
two hours for rated accuracy.

4. Configure the TSP-Link communications for each instrument.

Slave: A single-channel instrument such as the Model 2601,
2611, or 2635.

1. Press the MENU key to access MAIN MENU.

5-7

SECTION 5
Using Substrate Bias

Transistor e
Under Test L
\ Test
/I;\\ Fixture
NS
Output HI < Output HI Output HI
Series 2600 Series 2600 Series 2600
System System I System
SourceMeter SourceMeter SourceMeter
Channel B v Channel A Channel A
Node 2 Node 1 v Node 1
Sources Sweeps V
Sweeps I, Substrate Bias MeasuresCIEc
Output LO
8 Output LO Output LO

Vv

Figure 5-7. Program 14 test configuration

5-8

Select the COMMUNICATION menu. (Skip this step if the
Series 2600 instruments used have firmware Revision 1.4.0
or later installed.)

Select the TSPLINK_CFG menu. (If the Series 2600 instru-
ments used have firmware Revision 1.4.0 or later installed,
the menu name should be TSPLINK.)

Select the NODE menu.
Set the NODE number to 2 and press ENTER.

4.
5.

Master: A dual-channel instrument such as the Model 2602,
2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if
the Series 2600 instruments used have firmware Revision
1.4.0 or later installed.)

Select the TSPLINK_CFG menu. (If the Series 2600
instruments used have firmware Revision 1.4.0 or later
installed, the menu name should be TSPLINK.)

Select the NODE menu.

Set the NODE number to 1 for the master and press
ENTER.

Select the TSPLINK CFG menu. (If the Series 2600 instru-
ments used have firmware Revision 1.4.0 or later installed,

the menu name should be TSPLINK.)
7. Select the RESET to initialize the TSP-Link.

Turn on the computer and start Test Script Builder (TSB).
Once the program has started, open a session by connecting

to the master instrument. For details on how to use TSB, see
the Series 2600 Reference Manual.

You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 14),
manually enter the code from the appendix, or import the
TSP file ‘BJT_Comm_Emit_Vsh.tsp’ after downloading it to
your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: htip:/www.
keithley.com/data?asset=50928.

Install a BJT with substrate connections in appropriate tran-
sistor socket of the test fixture. The test is optimized for BJTs
with source requirements similar to a 2N3904.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file’. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘BJT Comm_Emit Vsb(). This can be done by typing
the text FET _ Comm _ Source _ Vsb()’ after the active
prompt in the Instrument Console line of TSB.

In the program ‘BJT_Comm_Emit _Vsb().tsp’, the
function BOT _ Comm _Emit Vsb(istart,

SECTION 5
Using Substrate Bias

10.

istop, isteps, vstart, vstop, vsteps,
vsbsource) is created.

istart represents the start value for the base current
sweep

istop represents the stop value for the base current
sweep

isteps represents the number of steps in the sweep

vstart represents the start value for the collector-
emitter voltage sweep

vstop represents the stop value for the collector-emitter
voltage sweep

vsteps represents the number of steps in the sweep

vsbsource represents the substrate bias voltage

If these values are left blank, the function will use the default
values given to the variables, but you can specify each vari-
able value by simply sending a number that is in-range in the
function call. As an example, if you wanted to have the base
current (I) current sweep start value at 20uA, the base cur-
rent sweep stop value at 200uA and the number of steps to
be 10, the collector-emitter (Vi) voltage sweep start value
at 1V, the collector-emitter sweep stop value at 12V and the
number of steps to be 80, and the substrate bias to be -2V, you
would send BJT _ Comm _ Em t _Vsb(20E-6,
200E-6, 10, 1, 12, 80, -2) to the instrument.

The sources will be enabled, and the substrate bias is applied,

the base current value is applied, and the collector-emitter

voltage sweep is executed. The base current value is then
incremented and the collector-emitter sweep is re-run.

11. Once the gate-source sweep has been completed, the data (I,
Vs, Vi, and 1) will be presented in the Instrument Console
window of TSB.

5.4.3 Typical Program 14 Results

Figure 5-8 shows a typical plot generated by example Program 14.

5.4.4 Program 14 Description

After both instruments are returned to default conditions, Node 1
SMUB, which sweeps IB, is configured as follows:

e Source |

* [V compliance, 1.1V range

* Local sense

e istart: 10uA

e istop:50uA

* isteps:5

Next, Node 1 SMUA, which sweeps V. and measures I, is set up
to operate in the following manner:

* SourceV

* Local sensing

* 100mA compliance, autorange measure

* 1 NPLC Line cycle integration

Common-Emitter Characteristics
with Substrate Bias

5.00E-02
4.00E-02
@ 3.00E-02 —
@ I, =50uA
E I =40pA
= 2.00E-02
I, =30uA
I, =20pA
1.00E-02
I, = 10pA
0.00E+00 T T T T T T T T
0 1 2 g 4 6 7 8 9 10

V. (Volts)

Figure 5-8. Program 14 typical results: Common-emitter characteristics with substrate bias

SECTION 5
Using Substrate Bias

* vstart: 0V

e vstop: 10V

* vsteps: 100

Finally, Node 2 SMUA, which provides substrate bias, is
programmed:

* Source V
* Local sensing
* 100mA compliance, autorange measure

* vsbsource: 1V

After the instruments have been set up, the outputs are zeroed and
enabled. The substrate bias (Vg;) and first base current (1) values

5-10

are applied. Then, the collector-emitter voltage sweep begins. At
each point in the sweep, the collector current is measured. The
program enters the main program loop to perform five I vs. Ve,
sweeps, one for each of five I, values.

Upon completion of the base current sweep, all outputs are
zeroed and disabled. The data is written to the Instrument Con-
sole of TSB.

5.4.5 Modifying Program 14

For different sweeps, the base current start, stop, step, and
the collector-emitter voltage start, stop, and step values can be
changed as required. For different sweep lengths, loop counter
values must be adjusted accordingly.

Section 6
High Power Tests

6.1 Introduction

Many devices, such as LED arrays and power FETs, require large
current or voltage values for operation or characterization, which
can create issues when testing. While System SourceMeter instru-
ments are extremely flexible, they do have power limitations. For
example, a single SMU channel of a Model 2602 can deliver up to
40W of power. That translates to sourcing 1A at 40V or 40V at 1A.
What do we do if our device requires 2A at 40V?

Luckily, the answer is straightforward if we take certain precau-
tions.

The following examples illustrate how to configure a dual-channel
instrument, such as a Model 2602, 2612, or 2636, to deliver higher
current or voltage values.

6.1.1 Program 15 Test Configuration

Figure 6-1 shows the test configuration for Program 15. SMUA
and SMUB outputs are wired in parallel: SMUA Output HI to
SMUB Output HI and SMUA Output LO to SMUB output LO. This
effectively doubles the maximum current output and can deliver
a total of 2A at 40V.

Output Output Output Output
HI LO LO HI

Series 2600
System SourceMeter

DUT

Figure 6-1. High current (SMUs in parallel)

In this example, local sense is being used to measure voltage, but
you can use remote sensing from one of the SMU channels if high
accuracy voltage measurements are required. See paragraph 1.2.2
for more information on remote sensing.

6.1.2 Example Program 15: High Current
Source and Voltage Measure

Program 15 demonstrates how to deliver higher current sourcing
values using a dual-channel System SourceMeter instrument.
Follow these steps to use this program.

1. With the power off, connect the dual-channel Instrument to
the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 15),
manually enter the code from the appendix, or import the TSP
file ‘KI2602Example_High Current.tsp’ after downloading it
to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: bttp:/jwwuw.
keithley.com/dataZasset=50905.

6. Install a device (Power FET, LED array, etc.) in the appropriate
transistor socket of the test fixture.

7. Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file’. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

8. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the

6-1

SECTION 6
High Power Tests

function ‘RunHighCurrent (sourcei,points), where
sourcei is the desired current value and points is the
number of voltage measurements.

9. Inthe program ‘KI2602Example_High Current.tsp’, the func-
tion RunHighCurrent (sourcei,points) is created.

* sourcei represents the current value delivered to the
DUT. Note that the programmed current value for each
SMU is half the isource value.

* points represents the number of voltage measurements
acquired

If you wanted to source 2A total to the DUT and collect 100
voltage measurements, you would send
RunHighCurrent (2, 100) to the instrument.

10. The sources will be enabled, and the current source and
voltage measurements will be executed.

11. Once the measurements have been completed, the data will
be presented in the Instrument Console window of TSB.

6.1.3 Program 15 Description

After the SMUs are returned to default conditions, SMUA is con-
figured as follows:

* Source |

* 40V compliance, autorange

* Local sense

¢ 1 NPLC integration rate

* sourcei: Desired DUT current

* points: Number of points to measure

Next, SMUB is set up to operate in the following manner:

¢ Source I
* Local sensing
* 40V, autorange

* sourcei: Desired DUT current

After the instrument is set up, the outputs are zeroed and enabled.
Each SMU performs a DC current source and SMUA begins to
measure the voltage. When the data collection has reached the
desired number of points, the outputs are disabled and the voltage
data is printed to the Instrument Console of TSB.

6.2 Instrument Connections

WARNING
If either SMU reaches a compliance state, the instru-
ment, device, or both could be damaged. To avoid
this, set the compliance value to the maximum

for your instrument and avoid open or other high
resistance states for the SMUs when in Current
Source mode.

6.2.1 Program 16 Test Configuration

Figure 6-2 shows the test configuration for Program 16: SMUA
and SMUB outputs are wired in series, SMUA Lo to SMUB Hj,
SMUA Hi to DUT, SMUB Lo to DUT. This effectively doubles the
maximum voltage output and can deliver a total of 80V at 1A using
a Model 2602 System SourceMeter instrument.

6.2.2 Example Program 16: High Voltage
Source and Current Measure

Program 16 demonstrates how to deliver higher voltage sourcing
values using a dual-channel System SourceMeter instrument.
Follow these steps to use this program.

1. With the power off, connect the dual-channel Instrument to
the computer’s IEEE-488 interface.

2. Connect the test fixture to both units using appropriate
cables.

3. Turn on the Instrument and allow the unit to warm up for two
hours for rated accuracy.

4. Turn on the computer and start Test Script Builder (TSB). Once
the program has started, open a session by connecting to the
instrument. For details on how to use TSB, see the Series 2600
Reference Manual.

5. You can simply copy and paste the code from Appendix A in
this guide into the TSB script editing window (Program 16),
manually enter the code from the appendix, or import the TSP

Output Output
LO HI

Series 2600
System SourceMeter

DUT

Figure 6-2. High voltage (SMUs in series)

SECTION 6
High Power Tests

file ‘KI12602Example High Voltage.tsp’ after downloading it
to your PC.

If your computer is currently connected to the Internet, you
can click on this link to begin downloading: btip:/www.
keithley.com/dataZasset=50960.

. Install a device (Power FET, LED array, etc.) in the appropriate
transistor socket of the test fixture.

Now, we must send the code to the instrument. The simplest
method is to right-click in the open script window of TSB,
and select ‘Run as TSP file'. This will compile the code and
place it in the volatile run-time memory of the instrument.
To store the program in non-volatile memory, see the “TSP
Programming Fundamentals” section of the Series 2600 Refer-
ence Manual.

. Once the code has been placed in the instrument run-time
memory, we can run it at any time simply by calling the func-
tion ‘RunHighVoltage(sourcev, points)’, where
sourcei is the desired voltage value and points is the
number of voltage measurements.

. In the program ‘KI2602Example_High Voltage.tsp’, the func-
tion RunHighVoltage (sourcev,points) is created.

* sourcev represents the voltage value delivered to the
DUT Note that the actual voltage value programmed for
each SMU is half the sourcev value.

* points represents the number of voltage measurements
acquired

If you wanted to source 80V total to the DUT and collect 100
voltage measurements, you would send
RunHighVoltage (80, 100) to the instrument.

10. The sources will be enabled, and the voltage source and cur-
rent measurements will be executed.

11. Once the measurements have been completed, the data will
be presented in the Instrument Console window of TSB.

6.2.3 Program 16 Description

After the SMUs are returned to default conditions, SMUA is con-
figured as follows:

* Source V

* 1A compliance, autorange

¢ 1 NPLC integration rate

* sourcev: DUT voltage

* points: Number of points to measure

Next, SMUB is set up to operate in the following manner:

¢ Source |
¢ 1A, autorange

* sourcev: DUT voltage

After the instrument is set up, the outputs are zeroed and enabled.
Each SMU performs a DC voltage source and SMUA begins to
measure the current. When the data collection has reached the
desired number of points, the outputs are disabled and the cur-
rent data is printed to the Instrument Console of TSB.

Warning:
If either SMU reaches a compliance state, the instru-
ment, device, or both could be damaged. To avoid
this, set the compliance value to the maximum for
your instrument and avoid shorting the SMUs when
in Voltage Source mode.

6-3

Appendix A
Scripts

Section 2. Two-Terminal Devices

Program 1. Voltage Coefficient of Resistors

-- 1
Volt Co():

This program performs a voltage coefficient measurement on a 10GQ part.
Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter® instrument
(1) 10GQ resistor

Running this script creates functions that can be used to measure the voltage coefficient
of resistances.

The functions created are:
1. Volt Co(vlsrc, v2src) --Default values vlsrc = 100V, v2src = 200V
2. Check Comp ()
3. Calc Val(vlsrc, v2src, ilmeas, i2meas)
4. Print Data(voltco,resl,res2)
See detailed information listed in individual functions.
To run:
1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type Volt Co()

3) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.9.2007
11--

function Volt Co(vlsrc, v2src) --Configure instrument to supply two user-defined
--voltages and measure current.

--Instrument variables.

A-1

APPENDIX A

Scripts

A-2

local 1 srcdelay = 0 --Source delay before measurement
local 1 _icmpl = 1E-3 --Source compliance
local 1 _nplc = 1 --Measurement Integration Rate

local 1 _vlsrc = vlsrc --First voltage source value
local 1 v2src = v2src --Second voltage source value

--Define measured and calculated variables
local 1 _ilmeas = 0 --Initialize first current measurement
local 1 resl = 0 --Initialize first resistance measurement

local 1 _i2meas = 0 --Initialize second current measurement
local 1 res2 = 0 --Initialize second resistance measurement

0 --Initialize voltage coefficient calculation

local 1 _voltco
local 1 comp val = false --Initialize compliance variable

--Default values and level check

if (1_vlsrc == nil) then --Use default value
1 vlisrc = 100
end --if

if (1_vlsrc > 100) then --Coerce source value within range
1 vlisrc = 100
print (“Maximum voltage value is 202V!!")

end --if
if (1_v2src == nil) then --Use default value
1 v2src = 200
end --if
if (1_v2src > 200) then --Coerce source value within range

1 v2src = 200
print (“Maximum voltage value is 202V!!")
end --if

--Configure source and measure settings
smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

smua.source.func = smua.OUTPUT DCVOLTS --Output Voltage

smua.source.levelv = 0 --Source 0 before enabling output
smua.measure.nplc = 1 nplc --Set integration rate

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.limiti = 1 icmpl

smua.measure.autorangei = smua.AUTORANGE ON --Enable measurement autorange

APPENDIX A
Scripts

smua.source.output = smua.OUTPUT ON --Enable output
smua.source.levelv = 1 vlisrc --Source programmed value

1 comp val = Check Comp() --check compliance
if 1 comp val == true then
smua.source.output = smua.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to 0
else

delay (1l srcdelay) --wait before making measurement
1 ilmeas = smua.measure.i() --measure current

smua.source.levelv = 1 v2src --Source programmed value
delay (1l srcdelay) --wait before making measurement

1 i2meas = smua.measure.i() --Measure current

smua.source.output = smua.OUTPUT OFF --Disable output
1 voltco, 1 resl, 1 res2 = Calc Val(l vlsrc, 1 v2src, 1 ilmeas,l i2meas)
--calculate
Print Data(l voltco, 1 resl, 1 res2) --print
end --if

end --function Volt Co()
function Check Comp() --Function checks state of compliance, if true, prints warning and
returns
--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then

print (\\u)

print (*SMU Source in Compliance!”)

print (“Ensure proper connections, stable device, and settings are correct”)

print (“*Rerun Test”)

print (\\u)

end --if

return 1 _comp val

end --function Check Comp ()

A-3

APPENDIX A
Scripts

function Calc Val(vlsrc, v2src, ilmeas, i2meas) --function calculates resistance and
voltage coefficient

local 1 resl = vlsrc/ilmeas --Return quotient = resistance calculation

local 1 res2 = v2src/i2meas --Return quotient = resistance calculation

local 1 voltco = 100* (1 res2-1 resl)/(l resl*(v2src-vlsrc)) --Return quotient =
voltage coefficient

return 1 voltco, 1 _resl, 1 res2 --Return values
end --function Calc Val()

function Print Data(voltco,resl,res2)
local 1 _voltco = voltco
local 1 resl = resl
local 1 res2 = res2

print (™)

print (“**** Data ****”)

print (™)

print (“Woltage Coefficient: “, voltco, “%/V”) --Print Voltage Coefficient
print (™)

print (*Resistance R1: “, resl, “Ohms”) --Print resistance value

print (*Resistance R2: “, res2, “Ohms”) --Print resistance value

end --function Print Data()

--Volt Co() --Call Volt Col()

APPENDIX A
Scripts

Program 2. Capacitor Leakage Test

-- L
Cap_Leak() :

This program performs capacitor leakage measurement.
Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) 1pF aluminum electrolytic capacitor

Running this script creates functions that can be used to test capacitors.

The functions created are:
1. Cap_Leak(vsrc,soak) --Default value vsrc = 40V
2. Check Comp ()
3. Calc Val(vsrc, leaki)
4. Print Data(leaki, leakres)

See detailed information listed in individual functions.
To run:

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type Cap Leak()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.22.2007
11--

function Cap Leak(vsrc, soak) --Configure instrument to source user-defined voltage
--and measure current.

--Instrument variables.

local 1 soak = soak --Source delay before measurement (Recommended 7RC)
local 1 icmpl = 1E-2 --Source compliance

local 1 nplc = 1 --Measurement Integration Rate

local 1 vsrc = vsrc--Voltage source value

--Define measured and calculated variables
local 1 leaki = 0 --Initialize leakage current measurement
local 1 leakres = 0 --Initialize leakage resistance measurement

local 1 comp val = false --Initialize compliance variable

--Default setting and level check

A-5

APPENDIX A

Scripts
if (1_vsrc == nil) then --Use default value
1 vsrc = 40
end --if
if (1_vsrc > 100) then --Coerce source value within range
1 vsrc = 100
print (“Maximum voltage value is 100V!!")
end --if
if (1_soak == nil) then --Use default value
1 socak = 10
end --if
--Configure source and measure settings
smua.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
smua.source.func = smua.OUTPUT DCVOLTS --Output Voltage
smua.source.levelv = 0 --Source 0 before enabling output
smua.measure.nplc = 1 nplc --Set integration rate
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.limiti = 1_icmpl
smua.measure.autorangei = smua.AUTORANGE ON --Enable measurement autorange
--Begin test

smua.source.output = smua.OUTPUT ON --Enable output
smua.source.levelv = 1 vsrc --Source programmed value

delay (soak) --wait before making measurement
1 comp val = Check Comp() --check compliance
if 1 comp val == true then

smua.source.output = smua.OUTPUT OFF --Disable output

else
1 leaki = smua.measure.i() --measure current
smua.source.output = smua.OUTPUT OFF --Disable output
1 leakres = Calc_Val(l vsrc, 1 leaki) --calculate
Print Data(l leaki, 1 leakres) --print
end --if

end --function Cap_ Leak ()

APPENDIX A
Scripts

function Check Comp() --Function checks state of compliance, if true, prints warning and
returns
--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)
end --if

return 1 _comp val

end --function Check Comp ()

function Calc Val(vsrc, leaki) --function calculates resistance and voltage coefficient
local 1 _vsrc = vsrc --Pass global source variable to local
local 1 leaki = leaki --Pass global current variable to local
local 1 _leakres = 0 --Initialize leakage resistance local

1 leakres = vsrc/leaki --Return quotient = resistance calculation
return 1_leakres

end --function Calc Val()

function Print Data(leaki, leakres)

local 1 leaki = leaki
local 1 leakres = leakres

print (™)

print (“**** Data ****”)

print (™)

print (“Leakage Current: “, 1 leaki, “A”) --Print Leakage Current

print (™)

print (“Leakage Resistance: “, 1 leakres, “Ohms”) --Print resistance value

end --function Print Data()

--Cap_Leak() --Call Cap Leak() function

A7

APPENDIX A
Scripts

Program 3. Diode Characterization
Program 3A. Diode Characterization Linear Sweep

-- [
Diode Fwd Char(): USES TABLES

This program performs a forward characterization test on a diode and prints data.
Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) Silicon diode or equivalent

Running this script creates functions that can be used to measure the IV characteristics
of diodes.

The functions created are:
1. Diode Fwd Char(ilevel, start, stop, steps) --Default values ilevel = 0s,
start = 1ma, stop = 10ma

--steps = 10
2. Print Data(steps,volt,curr)
See detailed information listed in individual functions.
To run:
1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type Diode Fwd Char ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.22.2007

function Diode Fwd Char(ilevel, start, stop, steps) --Configure instrument to source a bias
current

--and perform a current sweep from start to stop in a user-defined number of steps. Returns
measured

--voltage and current values.

--Global variables

APPENDIX A
Scripts

local 1 _irange = 100E-2 --Current source range
local 1 _ilevel = ilevel --Initial source value
local 1 _vcmpl = 6 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 start = start --Sweep start current
local 1 stop = stop --Sweep stop current

local 1 steps = steps --Number of steps in sweep
local 1 delay = 0.001 --Source delay

--Default values and level check

if (1_ilevel == nil) then --Use default value
1 ilevel = 0
end --if

if (1_ilevel > 0.1) then --Coerce value
1 ilevel = 0.1
end --if

if (1_start == nil) then --Use default value
1 start = 1E-4
end --if

if (1_start > 1) then --Coerce value
1 start =1
end --if

if (1_stop == nil) then --Use default value
1 stop = 1E-2
end --if

if (1_stop > 1) then --Coerce value
1 stop =1
end --if

if (1_steps == nil) then --Use default value
1 steps = 100
end --if

if (1_steps > 1E3) then --Coerce value
1 steps = 1E3
end --if

local 1 step = (1 _stop - 1 start)/ (1 steps - 1) --Current step size
local 1 _source val = 1 start --Source value during sweep
local 1 i = 1 --Iteration variable

APPENDIX A
Scripts

--Data tables
local 1 curr = {} --Create data table for sourced current
local 1 volt = {} --Create data table for measured voltage

smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure SMUA source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS
smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli = 1 ilevel --Source
smua.source.limitv = 1_vcmpl
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange

smua.measure.nplc = 1 nplc --Measurement integration rate
smua.source.output = smua.OUTPUT ON --Enable Output
--Execute sweep

for 1 i =1, 1 steps do
--smua.source.leveli = 1 source val

delay (1l delay) --Wait before measurement
1 volt[1l_i] = smua.measure.v() --Measure voltage
1 curr[l_i] = smua.measure.i() --Measure current

1 source _val = 1 _source val + 1 _step --Calculate new source value
smua.source.leveli = 1 source val --Increment source
end--for

smua.source.output = smua.OUTPUT OFF --Disable output
smua.source.leveli = 1 ilevel --Return source to bias level

Print Data(l steps, 1 volt, 1 curr)
end--function Diode Fwd Chr ()

function Print Data (steps,volt,curr)
--Print Data to output queue

--Local Variables

local 1 _steps = steps

local 1 volt = volt

local 1 curr = curr

print (“Voltage Data (V) :")

for 1 i =1, 1 steps do
print (1_volt([1l i])

end

print (™)

A-10

APPENDIX A
Scripts

print (“*Source Current Data (A):")
for 1 i =1, 1 steps do

print (1_curr[l i])
end

end --function Print Data()

--Diode Fwd Chr()

Program 3B. Diode Characterization Log Sweep

-- [0
Diode Fwd Char Log(): USES TABLES

This program performs a log sweep forward characterization test on a diode and prints
data.

Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) Silicon diode or equivalent

Running this script creates functions that can be used to measure the IV characteristics
of diodes.

The functions created are:

1. Diode Fwd Char Log(ilevel, start, stop, points) --Default values ilevel =
0s,
--start = lua, stop = 10ma
--points = 10
2. Print Data(steps,volt,curr)
See detailed information listed in individual functions
To run:

1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type Diode Fwd Char Log()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 10.12.2007

11--

A-11

APPENDIX A

Scripts

function Diode Fwd Char Log(ilevel, start, stop, points)

a bias

--CConfigure instrument to source

--current, and perform a logarithmic current sweep from start to stop in a user-defined
number of points per decade.
--Returns measured voltage and current values.

A-12

--Global variables

local 1 _irange = 100E-2 --Current source range
local 1 _ilevel = ilevel --Initial source value
local 1 _vcmpl = 6 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 _start = start --Sweep start current

local 1 stop = stop --Sweep stop current

local 1 points = points --Number of steps in sweep
local 1 delay = 0.01 --Source delay

--Default values and level check

if (1_ilevel == nil) then --Use default value
1 ilevel = 0
end --if

if (1_ilevel > 0.1) then --Coerce value
1 ilevel = 0.1

end --if

if (1_start == nil) then --Use default value
1 start = 1E-6

end --if

if (1_start > 1) then --Coerce value
1 start =1
end --if

if (1_stop == nil) then --Use default value
1 stop = 1E-2

end --if

if (1_stop > 1) then --Coerce value

1 stop =1
end --if
if (1_points == nil) then --Use default value

1 points = 10

APPENDIX A

Scripts
end --if
if (1_points > 1E3) then --Coerce value
1 points = 1E3
end --if
local 1 step = (math.logl0(l stop) - math.loglO(l start))/(l points - 1)
--Current step size
local 1 source val = math.logl0(l start) --Source value during sweep
local 1 i = 1 --Iteration variable
--Data tables
local 1 curr = {} --Create data table for sourced current
local 1 volt = {} --Create data table for measured voltage
smua.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
--Configure SMUA source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS
smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli = 1 ilevel --Source bias
smua.source.limitv = 1_vcmpl
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange
smua.measure.nplc = 1 nplc --Measurement integration rate
smua.source.output = smua.OUTPUT ON --Enable Output
--Execute sweep
for 1 i = 1, 1 points do
smua.source.leveli = math.pow(10, 1 source val) -- Program source to sweep
level.
delay (1l delay) --Wait before measurement
1 volt[1l_i] = smua.measure.v() --Measure voltage
1 curr[l_i] = smua.measure.i() --Measure current

1 source _val = 1 _source val + 1 _step --Increment source value
end--for

smua.source.output smua.OUTPUT OFF --Disable output
smua.source.leveli = 1 ilevel --Return source to bias level

Print Data(l points, 1 volt, 1 curr)

end--function Diode Fwd Chr ()

function Print Data (points,volt,curr)

A-13

APPENDIX A
Scripts

--Print Data to output queue

--Local Variables

local 1 _points = points
local 1 volt = volt
local 1 _curr = curr

print (“Voltage Data (V) :")
for 1 i = 1, 1 points do
print (1_volt ([l i])

end

print (™)
print (“*Source Current Data (A):")

for 1 i = 1, 1 points do
print (1_curr[l i])
end

end --function Print Data()

--Diode Fwd Chr Log ()

Program 3C. Diode Characterization Pulsed Sweep

-- [
Diode Fwd Char Pulse(): USES TABLES

This program performs a forward characterization test on a diode using a pulsed source and
prints data. The default is a 50% duty cycle (i.e., ton = toff)

Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) Silicon diode or equivalent

Running this script creates functions that can be used to measure the IV characteristics
of diodes.

The functions created are:

1. Diode Fwd Char Pulse(ilevel, start, stop, ton, toff, steps) --Default values ilevel =
0s, start =

--1lma, stop = 10ma, ton

10ms,
--toff = 10ms, steps = 10
2. Print Data(steps,volt,curr)

See detailed information listed in individual functions

A-14

APPENDIX A

Scripts

To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type Diode Fwd Char ()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.
Revl: JAC 5.22.2007
11--
—————————————————— Keithley TSP Function ------------------
function Diode Fwd Char Pulse(ilevel, start, stop, ton, toff, steps) --Configure instrument

to source a

--bias current,and perform a pulsed current sweep from start to stop in a user-defined
number of steps.

--Each pulse is on ton (s) and off toff (s) and returns to the bias level during the toff
time.

--Returns measured voltage and current values.

--Global variables

local 1 _irange = 100E-2 --Current source range
local 1 _ilevel = ilevel --Initial source value
local 1 _vcmpl = 6 --Source compliance

--Shared local variables
local 1 nplc = 0.1 --Integration rate of measurement

--Local sweep variables

local 1 _start = start --Sweep start current

local 1 stop = stop --Sweep stop current

local 1 steps = steps --Number of steps in sweep

local 1 delay = 0.001 --Source delay

local 1 ton = ton --Pulse on duration

local 1 toff = toff --Pulse off duration

local 1 _tonwm --Adjusted Pulse on duration to accomodate Measurement Duration

--Default values and level check

if (1_ilevel == nil) then --Use default value
1 ilevel = 0
end --if

if (1_ilevel > 1E-1) then --Coerce value
1 ilevel = 1E-1
end --if

A-15

APPENDIX A
Scripts

if (1_start == nil) then --Use default value
1 start = 1E-3
end --if

if (1_start > 0.1) then --Coerce value
1 start = 0.1
end --if

if (1_stop == nil) then --Use default value
1 stop = 1E-2
end --if

if (1_stop > 0.1) then --Coerce value
1 stop = 0.1
end --if

if (1_ton == nil) then --Use default value
1 ton = 10E-3
end --if

if (1_ton > 1E-1) then --Coerce value
1 ton = 1E-1
end --if

if (1_toff == nil) then --Use default value
1 toff = 10E-3
end --if

if (1_toff > 1E-1) then --Coerce value
1 toff = 1E-1
end --if

if (1_steps == nil) then --Use default value
1 steps = 100
end --if

if (1_steps > 1E3) then --Coerce value
1 steps = 1E3
end --if

local 1 step = (1 _stop - 1 start)/ (1 _steps - 1) --Current step size
local 1 _source val = 1 start --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables
local 1 curr = {} --Create data table for sourced current
local 1 volt {} --Create data table for measured voltage

A-16

APPENDIX A

Scripts
1 tonwm = 1 ton - (2*smua.measure.nplc/localnode.linefreq) - 250E-6 --Adjust pulse
duration by
--accounting for measurement time
smua.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
--Configure SMUA source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS
smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli = 1 ilevel --Source
smua.source.limitv = 1_vcmpl
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange
smua.measure.nplc = 1 nplc --Measurement integration rate
smua.source.output = smua.OUTPUT ON --Enable Output
--Execute sweep
for 1 i =1, 1 steps do
smua.source.leveli = 1 source val
delay (1l tonwm) -- Wait pulse time - measurement & overhead time.
1 volt[1l_i] = smua.measure.v() --Measure voltage
1 curr[l_i] = smua.measure.i() --Measure current
smua.source.leveli = 1 ilevel -- Return source to bias level.
delay (1l toff) -- Wait pulse off time.

1 source _val = 1 _source val + 1 _step --Calculate new source value
smua.source.leveli = 1 source val --Increment source --]]
end--for

smua.source.output smua.OUTPUT OFF --Disable output
smua.source.leveli = 1 ilevel --Return source to bias level

Print Data(l steps, 1 volt, 1 curr)
end--function Diode Fwd Chr ()

function Print Data (steps,volt,curr)
--Print Data to output queue

--Local Variables
local 1 _steps = steps
local 1 volt = volt
local 1 _curr = curr

print (“Voltage Data (V) :")
for 1 i =1, 1 steps do

print (1_volt([1l i])
end

A-17

APPENDIX A
Scripts

print (\\u)
print (“*Source Current Data (A):")

for 1 i =1, 1 steps do
print (1_curr[l i])
end

end --function Print Data()

--Diode Fwd Chr Pulse()

A-18

APPENDIX A
Scripts

Section 3. Bipolar Transistor Tests
Program 4. Common-Emitter Characteristics

-- [0
BJT_Comm_Emit () : USES TABLES

This program applies a bias to the base of a BJT (Ib) and sweeps voltage on the collector/
emitter (VCE). The VCE, IB, and IC are then printed.

Required equipment:

(1) Dual-channel Series 2600 System SourceMeter instrument
(1) 2N5089 NPN Transistor

Running this script creates functions that can be used to measure the common emitter
characteristics of transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. BJT Comm Emit (istart, istop, isteps, vstart, vstop, vsteps)
--Default values istart = 10uA, istop = 50uA, isteps = 5, vstart = 0V,
vstop = 10V, vsteps = 100
2. Print Data(isteps,vsteps, ce volt,ce curr, base curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type BJT Comm Emit ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.22.2007

function BJT Comm Emit (istart, istop, isteps, vstart, vstop, vsteps) --Configure SMUB to
source a bias

--current on the base and SMUA performs a voltage sweep on the Collector-Emitter from
start to stop in a

--user-defined number of steps.

--SMUB then increments to next bias value and continues to stop value.

--Returns measured voltage and current values.

--Global variables
local 1 irange = 100E-6 --Base current source range

A-19

APPENDIX A
Scripts

local 1 _vcmpl = 1 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100E-3 --Collector-emitter source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 istart = istart --Base sweep start current
local 1 istop = 1istop --Base sweep stop current
local 1 isteps = isteps --Number of steps in sweep

local 1 vstart = vstart --Collector-emitter sweep start voltage
local 1 vstop = vstop --Collector-emitter sweep stop voltage

local 1 vsteps = vsteps --Number of steps in sweep

--Default values and level check

if (1_istart == nil) then --Use default value
1 istart = 10E-6
end --if

if (1_istart > 100E-6) then --Coerce value
1 istart = 100E-6
end --if

if (1_istop == nil) then --Use default value
1l istop = 50E-6
end --if

if (1_istop > 500E-6) then --Coerce value
1 istop = 500E-6

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 5

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100
end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size
local 1 _isource val = 1 _istart --Source value during sweep
local 1 i = 1 --Iteration variable

if (1_vstart == nil) then --Use default value
1 vstart = 0
end --if

A-20

APPENDIX A
Scripts

smua.
smua.
smua.

smua.
smua.

smub.
smub.

if (1_vstart > 100E-3) then --Coerce value
1 vstart = 100E-3

end --if

if (1_vstop == nil) then --Use default value
1 vstop = 10

end --if

if (1_vstop > 40) then --Coerce value
1 vstop = 40

end --if

if (1_vsteps == nil) then --Use default value
1 vsteps = 100

end --if

if (1_vsteps > 2E+2) then --Coerce value
1 vsteps = 2E+2
end --if

local 1 vstep = (1 vstop - 1 vstart)/ (1 vsteps - 1) --Voltage step size

local 1 _vsource val = 1 vstart --Source value during sweep
local 1 v = 1 --Iteration variable

--Data tables
local 1 base curr
local 1 _ce volt
local 1 _ce curr

{} --Create data table for sourced current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
source.levelv = 0
source.limiti = 1 icmpl
measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

measure.autozero = smua.AUTOZERO_AUTO
measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Base (SMUB) source and measure settings
smub.source.func = smub.OUTPUT_DCAMPS
source.autorangei = smub.AUTORANGE ON --Enable source autorange
source.leveli = 0

{} --Create data table for collector-emitter measured voltage
{} --Create data table for collector-emitter measured current

A-21

APPENDIX A
Scripts

smub.source.limitv = 1_vcmpl
smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output

--Execute sweep
for 1 i =1, 1 isteps do

smub.source.leveli = 1 isource val

1 ce volt[l i] = {} --Create new row in table
1 ce curr[l i] = {} --Create new row in table

1 base curr[l_i] = smub.measure.i() --Measure base current
for 1 v = 1,1 _vsteps do
if (1_v == 1) then --Intialize start source value
1 vsource val = 1 vstart

end --if

delay(0.001) --Delay
1 ce volt[1l i][1 v] = smua.measure.v() --Measure voltage
1 ce curr(l i][1 v] = smua.measure.i() --Measure current

1 vsource val = 1 vsource val + 1 _vstep --Calculate new source value

if (1_v == 1 _vsteps) then --Reinitialize voltage value after last
iteration
1 vsource val = 1 _vstart

end --if

smua.source.levelv = 1 vsource val --Increment source
end --for
1 isource val = 1 isource val + 1 _istep --Calculate new source value

end--for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level
smub.source.leveli = 0 --Return source to bias level

A-22

APPENDIX A
Scripts

Print Data(l isteps,l vsteps, 1 ce volt, 1 ce curr, 1 base curr)

end--function BJT Comm_ Emit ()

function Print Data(isteps,vsteps, ce volt,ce curr, base curr)
--Print Data to output queue

--Local Variables

local
local
local
local
local
local
local

1 isteps = isteps

1 vsteps = vsteps

1 i=1 --Tteration variable
l v =1 --ITteration variable
1 ce volt = ce_volt

1 ce curr = ce_curr

1 base curr = base curr

for 1 i =1, 1 isteps do

print (“”)
print (“Base Current Bias”, 1 base curr[l i])
print (*Emitter Voltage (V)”,”Emitter Current (A)”")

for 1 v = 1, 1 vsteps do

print (1 _ce volt[1l i][1 v], 1 ce curr[l i][1 v])

end --for

end --for

end --function Print Data()

--BJT_ Comm_ Emit ()

A-23

APPENDIX A
Scripts

Program 5. Gummel Plot

-- [
Gummel () : USES TABLES

This program performs a series of voltage sweeps on the base-emitter (VBE) of a BJT at a
fixed collector-emitter voltage (VCE). The base-emitter (IB) and collector-emitter (IC)
currents are measured and printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN Transistor

Running this script creates functions that can be used to create a Gummel plot of
transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. Gummel (vbestart, vbestop, vbesteps, vcebias)
--Default values vbestart = 0V, vbestop = 0.7V, vbesteps = 70, vcebias =
10V
2. Print Data(vbesteps,vbe, vcebias, ic, ib)

See detailed information listed in individual functions.
To run:

1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type Gummel ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 5.30.2007

function Gummel (vbestart, vbestop, vbesteps, vcebias) --Configure SMUB to perform a voltage
sweep on the

--base (Vbe) from start to stop in a user-defined number of steps while SMUA performs a
fixed voltage bias on the

--collector-emitter. SMUA then increments to next bias value and continues to stop value.
--Returns measured Ib, Ic, and Vbe.

--Global variables
local 1 icmpl = 100E-3 --Source compliance

A-24

APPENDIX A

Scripts

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vbestart = vbestart --Base sweep start voltage
local 1 vbestop = vbestop --Base sweep stop voltage
local 1 vbesteps = vbesteps --Number of steps in sweep

local 1 _vcebias = vcebias --Collector-emitter voltage

--Default values and level check

if (1_vbestart == nil) then --Use default value
1 vbestart = 0
end --if

if (1_vbestart > 100E-6) then --Coerce value
1 vbestart = 100E-6
end --if

if (1_vbestop == nil) then --Use default value
1 _vbestop = 700E-3
end --if

if (1_vbestop > 1) then --Coerce value
1 vbestop =1

end --if

if (1_vbesteps == nil) then --Use default value
1 _vbesteps = 70

end --if

if (1_vbesteps > 100) then --Coerce value
1 vbesteps = 100
end --if

local 1 vbestep = (1 vbestop - 1 vbestart)/ (1 vbesteps - 1) --Vbe step size
local 1 _vbesource val = 1 vbestart --Source value during sweep
local 1 vbe i = 1 --Iteration variable

if (1_vce bias == nil) then --Use default value
1 vce bias = 10
end --if

if (1_vce bias > 40) then --Coerce value
1 vce bias = 40
end --if

--Data tables
local 1 vbe = {} --Create data table for sourced voltage

A-25

APPENDIX A
Scripts

local 1 ic = {} --Create data table for Ic
local 1 ib = {} --Create data table for Ib

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0
smua.source.limiti = 1 _icmpl
smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Base (SMUB) source and measure settings

smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output smub.OUTPUT ON --Enable Output
smua.source.levelv = 1 vce bias

--Execute sweep
for 1 vbe i = 1,1 vbesteps do

if (1_vbe i == 1) then --Intialize start source value
1 vbesource val = 1 vbestart
end --if

delay(0.01) --Delay

1 vbe[l vbe i] = smub.measure.v() --Measure Vbe
1 ib[1 vbe i] = smub.measure.i() --Measure Ib
1 ic[l _vbe i] = smua.measure.i() --Measure Ic

1 vbesource val = 1 vbesource val + 1 vbestep --Calculate new source value

A-26

APPENDIX A
Scripts

if (1_vbe i == 1 vbesteps) then --Reinitialize voltage value after last

iteration

1 vbesource val =

end --if

1 vbestart

smub.source.levelv = 1 vbesource val --Increment source

end --for

smua.source.output
smub.source.output

smua.source.levelv
smub.source.levelv

smua.OUTPUT OFF --Disable
smub.OUTPUT OFF --Disable

0 --Return source to bias
0 --Return source to bias

output
output

level
level

Print Data(l vbesteps, 1 vbe,1 vce bias, 1 ic, 1 ib)

end--function Gummel ()

function Print Data (vbesteps,vbe, vcebias, ic, ib)
--Print Data to output queue

--Local Variables

vbesteps
1 --Iteration variable

= vcebias

local 1 vbesteps =
local 1 _vbe i =

local 1 _vbe = vbe

local 1 vce bias

local 1_ic = ic

local 1_ib = ib

print (™)

print (“Vce”, 1 vce bias)
print (“Vbe (V)”,”Ib

for 1 vbe i = 1, 1 vbesteps

(A) II’IIIC

(A)")

do

print (1 _vbe[l vbe i],1 ic[l vbe i], 1 ib[l vbe il)

end --for

end --function Print Data()

--Gummel ()

A-27

APPENDIX A
Scripts

Section 6. High Power Tests

Program 6. Current Gain
Program 6A. Current Gain (Search Method)

-- [
DC Gain Search():

This program performs a binary search on the base current (IB) of a BJT at a fixed
collector-emitter voltage (VCE). The base-emitter (IB) and collector-emitter (IC) currents
are measured and the IB, IC, and DC gain values are printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN transistor

Running this script creates functions that can be used to create a DC gain search of
transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. DC Gain Search(vcesource, lowib, highib, targetic)
--Default values vcesource = 5V, lowib = 1le-9A, highib = 100e-7A4,
targetic = 100e-6A
2. Check Comp ()

See detailed information listed in individual functions.
To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type DC _Gain Search()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.11.2007

function DC Gain Search(vcesource, lowib, highib, targetic) --Configure SMUB to source a
user-defined

--current on the base (Ib) while SMUA performs a fixed voltage bias on the collector-
emitter. SMUB then performs a

A-28

APPENDIX A
Scripts

--binary
measured.
--outside
specified
--limit i
--Returns

local
local
local
local
local
local
local

local
local

search between a Maximum and Minimum Ib value, and the collector current is
If measured value is

the tolerance, search is performed again until the value falls within the
range or the iteration

s reached.

measured Ib, Ic, and the DC Gain/Beta.

1 k --binary search iteration variable

1 k max = 20 --Maximum loop iteration

1 vce_source = vcesource --VCEsource value

1 high ib = highib --Start Ib high limit

1 low ib = lowib --Start Ib lo limit

1 target ic = targetic --Target Ic for binary search
1 nplc =1

1 ic_meas
1 ib_source --Base current

local 1 _beta meas

--Default values and level check

if (1_vce source == nil) then --Use default value
1 vce_source = 5
end --if
if (1_low_ib == nil) then --Use default value
1 low ib = le-9
end --if
if (1_high ib == nil) then --Use default value
1 high ib = 100E-7
end --if
if (1_target_ic == nil) then --Use default value
1 target_ic = 100e-6
end --if
smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear () --Clear the error queue
smua.measure.nplc = 1 nplc --Measurement integration rate
smub.measure.nplc = 1 nplc --Measurement integration rate
smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.limiti = (100 * 1 target ic) --Set compliance value
smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange
smub.source.func = smub.OUTPUT_DCAMPS

A-29

APPENDIX A
Scripts

smub.source.autorangei = smub.AUTORANGE ON --Enable source autorange
smub.source.limiti = 1 _high ib

smub.source.limitv = 6

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

--Start test
smua.source.levelv = 1 vce source --Set source level

smub.source.leveli = 0 --Set source level

smua.source.output = smua.OUTPUT ON --Enable output
smub.source.output = smub.OUTPUT ON --Enable output

delay(0.001) --Delay
1 comp val = Check Comp() --check compliance
if 1 comp val == true then --If unit is in compliance, end

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to 0
smub.source.leveli = 0 --Return source to 0

else

--Search for the right base current

repeat --Repeat search until measured Ic is within 5% of target, iteration maximum

reached, or

--compliance.
1 k=1%k+ 1 --Increment

1 ib source = ((1_high ib-1 low ib)/2) + 1 low ib --Determine source value

(Binary Search)

A-30

smub.source.leveli = 1 ib source --Program new source value
delay(0.0001) --Source delay

1 comp val = Check Comp() --check compliance
if 1 comp val == true then --If unit is in compliance, end
smua.source.output = smua.OUTPUT OFF --Disable output

smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv = 0 --Return source to 0
smub.source.leveli = 0 --Return source to 0

else

APPENDIX A
Scripts

1l ic_meas = smua.measure.i() --Measure Ic

if (1_target_ic < 1 _ic_meas) then --Compare measurement with
target value
1 high ib = 1 ib_source
else
1 low ib = 1_ib source
end --end if
end --ifelse

if 1 ic_meas == nil then --If no measurement taken, initialize to 0 to avoid arithmetic
--error in until statement below
1 ic_ meas = 0
end --if

until ((math.abs(l ic meas - 1 target ic) < (0.05*1 target ic))or(l _k>1 k max))
or(l comp val == true) --

--iteration limit reached
if (1 k > 1 k max) then
print (“Iteration Limit Reached!!”)
end --end if

smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output smub.OUTPUT OFF --Disable output

1 beta data = 1 ic meas/l ib source --Calculate gain
print (“Ic Data:”, 1 _ic_meas) --Print Ic data
print (“Ib Data:”, 1 ib source) --Print Ib
print (“Beta Data:”,1 beta data) --Print gain
end --ifelse
end--function DC Gain_ Search()
function Check Comp() --Function checks state of compliance, if true, prints warning and
returns
--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)

A-31

APPENDIX A
Scripts

end --if
return 1 _comp val
end --function Check Comp ()

--DC_Gain Search()

Program 6B. Current Gain (Fast Method)

-- [
DC Gain Fast()

This program applies a bias to the collector/emitter of a BJT (Vce) and sweeps current on
the emitter (IE). The gain for each emitter value is then printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN Transistor

Running this script creates functions that can be used to measure the gain characteristics
of transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. DC Gain Fast(vcesource, istart, istop, isteps)
--Default values vcesource = 10V, istart = 1mA, istop = 10mA, isteps = 10
2. Print Data(isteps, emitter curr, base curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type DC _Gain Fast()

2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.11.2007

function DC Gain Fast (vcesource, istart, istop, isteps) --Configure SMUB to source a bias
voltage

--on the base and SMUA performs a current sweep on the emitter from start to stop in a
user-defined number of steps.

A-32

APPENDIX A
Scripts

--Returns gain values.

--Global variables
local 1 irange = 100e-6 --Base current source range
local 1 vempl = 11 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100e-3 --Collector-emitter source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 istart = istart --Base sweep start current
local 1 istop = 1istop --Base sweep stop current
local 1 isteps = isteps --Number of steps in sweep

local 1 vce source = vcesource --Vce source value

--Default values and level check

if (1_vce source == nil) then --Use default value
1 vce_source = -10
end --if

if (1_vce source > 0) then --Coerce value

1 vce source = -1 vce source

end --if

if (1_istart == nil) then --Use default value
1 istart = -le-3

end --if

if (1_istart > 0) then --Coerce value
1 istart = -1 istart
end --if

if (1_istop == nil) then --Use default value
1l istop = -10e-3
end --if

if (1_istop > 0) then --Coerce value
1 istop = -i _stop

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 10

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100

A-33

APPENDIX A
Scripts

end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size
local 1 _isource val = 1 _istart --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables
local 1 base curr = {} --Create data table for sourced current
local 1 emitter curr = {} --Create data table for emitter current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure emitter current (SMUA) source and measure settings
smua.source.func = smua.OUTPUT_DCAMPS

smua.source.autorangei = smua.AUTORANGE ON --Enable source autorange
smua.source.leveli 0
smua.source.limitv = 1_vcmpl
smua.source.output = smua.OUTPUT ON --Enable Output

--Configure collector/emitter (SMUB) source and measure settings
smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangei = smub.AUTORANGE ON --Enable source autorang
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangei = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output
smub.source.levelv = 1 vce source --Program source

--Execute sweep
for 1 i =1, 1 isteps do

smua.source.leveli = 1 isource val

delay(0.01)
1 base curr[l i] = smub.measure.i() --Measure base current
1 emitter curr[l_i] = smua.measure.i() --Measure emitter current

1 isource val = 1 isource val + 1 _istep --Calculate new source value

end--for

A-34

APPENDIX A
Scripts

smua.source.output =
smub.source.output =

smua.source.levelv =
smub.source.leveli =

Print Data(l_isteps,

end--function DC Gain Fast ()

function Print Data(isteps,

smua.OUTPUT OFF --Disable output
smub.OUTPUT _OFF --Disable output

0 --Return source to bias level
0 --Return source to bias level

1 emitter curr, 1 base curr)

emitter curr, base curr)

--Print Data to output queue

--Local Variables

local 1 isteps = isteps
local 1 i = 1 --Iteration variable

local 1 _emitter curr

= emitter_curr

local 1 base curr = base curr
local 1 gain = {} --Gain variable

print (\\u)

print (*Base Current (A)”, “Emitter Current (A)”, “Gain”)

for 1 i =1, 1 isteps

do

1 gain[l i] = (math.abs(l emitter curr[l i]) - math.abs(l base curr[l i]))/math.
abs (1 _base_curr[l i]) ----Calculate gain

print (math.abs (1l base curr[l i]), math.abs(l emitter curr(l il), 1_

gain[l i])
end --for
end --function Print Data()

--DC_Gain Fast()

A-35

APPENDIX A
Scripts

Program 7. AC Current Gain

-- [
AC Gain():

This program sources two base currents (IB) on a BJT at a fixed collector-emitter voltage
(VCE) . The base-emitter (IB) and collector-emitter (IC) currents are measured and the IB,
IC, and AC gain values are printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N5089 NPN transistor

Running this script creates functions that can be used to perform a differential gain
measurement on transistors. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. AC Gain(vcesource, ibl, ib2)
--Default values vcesource = 5V, 1ibl = le-7A, 1b2= 2e-7A
2. Check Comp ()

See detailed information listed in individual functions.
To run:

1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type AC Gain()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.12.2007

function AC Gain(vcesource, ibl, ib2) --Configure SMUB to source a user-defined current on
the base (Ib)

--while SMUA performs a fixed voltage bias on the collector-emitter and the Ic is measured.
--SMUB then steps to the next base current and the Ic is measured.

--The AC Gain is then calculated.

--Returns measured Ibl, Ib2, Icl, Ic2 and the AC Gain/Beta.

local 1 vce source = vcesource --VCEsource value
local 1 ibl = ibl --Ib 1 source value

A-36

APPENDIX A
Scripts

local
local

local
local
local

1 ib2 = ib2 --Ib 2 source value
1 nplc =1

1l ic_measl = 0 --Ic measurement
1l ic_meas2 = 0 --Ic measurement
1 beta meas --Gain calculation variable

--Default values and level check

if (1_vce source == nil) then --Use default value
1 vce_source = 5

end --if

if (1_ibl == nil) then --Use default value
1 ibl = 1.45e-7

end --if

if (1_ib2 == nil) then --Use default value
1 ib2 = 1.6e-7

end --if

smua.reset () --Reset SMU

smub.reset () --Reset SMU

errorqueue.clear() --Clear the error queue

smua.measure.nplc = 1 nplc --Measurement integration rate
smub.measure.nplc = 1 nplc --Measurement integration rate

smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange

smua.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange

smub.source.func = smub.OUTPUT_DCAMPS

smub.source.autorangei = smub.AUTORANGE ON --Enable source autorange
smub.source.limitv = 6

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

--Start test
smua.source.levelv = 1 vce source --Set source level
smub.source.leveli = 0 --Set source level

smua.source.output = smua.OUTPUT ON --Enable output
smub.source.output = smub.OUTPUT ON --Enable output

delay(0.001) --Delay

smub.source.leveli = 1 ibl --Program new source value
delay(0.001) --Source delay

A-37

APPENDIX A

Scripts
--1 comp val = Check Comp() --check compliance
if 1 comp val == true then --If unit is in compliance, end
smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output
smua.source.levelv = 0 --Return source to 0
smub.source.leveli = 0 --Return source to 0
else
1 ic_measl = smua.measure.i() --Measure Ic 1
smub.source.leveli = 1 ib2 --Program new source value
1l ic_meas2 = smua.measure.i() --Measure Ic 2
1 beta data = (1 ic meas2 - 1 ic measl)/(1 ib2 - 1 ibl) --Calculate gain
print (“”) -
print (*Ib 1(A) “, “Ic 1(A) “, “Ib 2(Aa) “, “Ic 2(a) “)
print(1_ibl, 1 ic measl, 1 ib2, 1 ic meas2) --Print Ib and Ic data

print (“") --
print (*Differential Gain”)
print (1_beta data) --Print gain

end --ifelse

smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

end --function AC _Gain()
function Check Comp() --Function checks state of compliance, if true, prints warning and
returns

--to run test()

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)
end --if

return 1 _comp val

A-38

APPENDIX A
Scripts

end --function Check Comp ()

--AC Gain()

Program 8. Transistor Leakage (ICEO)

-- [
Iceo(): USES TABLES

This program sweeps the voltage on the collector/emitter (VCE) of a BJT with an open base.
The VCEO and ICEO values are then printed.

Required equipment:

(1) Single-channel Keithley Series 2600 System SourceMeter instrument
(1) 2N3904NPN transistor

Running this script creates functions that can be used to measure open base voltage and
current characteristics of transistors. The default values are for an NPN transistor type
2N3904.

The functions created are:
1. Iceo(vstart, vstop, vsteps)
--Default values vstart = 0V, vstop = 10V, vsteps = 100
2. Print Data(vsteps, ce volt,ce curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type Vceo()

2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.12.2007

function Iceo(vstart, vstop, vsteps) --Configure SMUA to perform a voltage

--sweep from start to stop in a user-defined number on the collector/emitter of a BJT with
an open base. The collector --current (Iceo) is measured at each voltage value.

--Returns programmed voltage and measured current values.

A-39

APPENDIX A
Scripts

--Global variables
local 1 irange = 100E-6 --Base current source range
local 1 vempl = 1 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100E-3 --Collector-emitter source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vstart = vstart --Collector-emitter sweep start voltage
local 1 vstop = vstop --Collector-emitter sweep stop voltage
local 1 vsteps = vsteps --Number of steps in sweep

--Default values and level check
local 1 i = 1 --Iteration variable

if (1_vstart == nil) then --Use default value
1 vstart = 0
end --if

if (1_vstart > 100E-3) then --Coerce value
1 vstart = 100E-3

end --if

if (1_vstop == nil) then --Use default value
1 vstop = 10

end --if

if (1_vstop > 40) then --Coerce value
1 vstop = 40

end --if

if (1_vsteps == nil) then --Use default value
1 vsteps = 100

end --if

if (1_vsteps > 2E+2) then --Coerce value
1 vsteps = 2E+2
end --if

local 1 vstep = (1 vstop - 1 vstart)/ (1 vsteps - 1) --Voltage step size
local 1 vsource val = 1 vstart --Source value during sweep

--Data tables
local 1 ce volt = {} --Create data table for collector-emitter measured voltage

local 1 ce curr = {} --Create data table for collector-emitter measured current

smua.reset () --Reset SMU

A-40

APPENDIX A
Scripts

errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS
smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0 --Source 0V
smua.source.limiti = 1 icmpl --Set compliance level
smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output
smua.source.levelv = 1 vsource val --Program source value

--Execute sweep
for 1 i =1, 1 vsteps do

delay(0.01)
1 ce volt[l i] = 1 vsource val --Save programmed voltage
1 ce curr[l_i] = smua.measure.i() --Measure current

1 vsource val = 1 vsource val + 1 _vstep --Calculate new source value
smua.source.levelv = 1 vsource val --Increment source
end--for

smua.source.output = smua.OUTPUT OFF --Disable output
smua.source.levelv = 0 --Return source to bias level

Print Data(l vsteps,l ce volt, 1 ce curr)
end--function Vceo ()

function Print Data(vsteps, ce volt,ce curr)
--Print Data to output queue

--Local Variables

local 1 vsteps = vsteps

local 1 i = 1 --Iteration variable
local 1 _ce volt = ce_volt

local 1 ce curr = ce_curr

print (\\u)
print (“Vceo (V)" ,”Iceo (A)")

A-41

APPENDIX A
Scripts

for 1 i =1, 1 vsteps do
print (1 _ce volt[l i], 1 ce curr(l i])
end --for

end --function Print Data()

--Iceo()

A-42

APPENDIX A
Scripts

Section 4. FET Tests

Program 9. Common-Source Characteristics

-- 1
FET Comm_ Source (): USES TABLES

This program applies a bias to the gate-source of an FET (VGS) and sweeps voltage on the
drain-source (VDS). The VDS and ID values at each VGS bias are then printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-Channel MOSFET

Running this script creates functions that can be used to measure the common source
characteristics of
FETs. The default values are for an N-channel MOSFET type SD210.

The functions created are:
1. FET Comm_Source (vgsstart, vgsstop, vgssteps, vdsstart, vdsstop, vdssteps)
--Default values vgsstart = 0, vgsstop = 10V, vgssteps = 5, vdstart = 0V,
vdstop = 10V, vdsteps = 100
2. Print Data(vgssteps,vdssteps, vds data,Id data, vgs data)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type FET Comm Source ()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.18.2007

function FET Comm Source (vgsstart, vgsstop, vgssteps, vdsstart, vdsstop, vdssteps)
--Configure SMUB to source a bias

--voltage on the gate-source (Vgs) and SMUA performs a voltage sweep on the drain-source
(Vds) from start to stop in a --user-defined number of steps. SMUB then increments to next
bias value and continues to the stop value.

--Returns measured Vgs, Vds, and Id values.

--Global variables
local 1 vrange = 40 --

A-43

APPENDIX A
Scripts

local 1 icmpl = 100E-3 --

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgsstart = vgsstart --Gate-source sweep start voltage
local 1 vgsstop = vgsstop --Gate-source sweep stop voltage
local 1 vgssteps = vgssteps --Number of steps in sweep

local 1 vdsstart = vdsstart --Drain-source sweep start voltage
local 1 vdsstop = vdsstop --Drain-source sweep stop voltage

local 1 vdssteps = vdssteps --Number of steps in sweep

--Default values and level check

if (1_vgsstart == nil) then --Use default value
1 vgsstart = 0
end --if

if (1_vgsstart > 10) then --Coerce value
1 vgsstart = 10
end --if

if (1 _vgsstop == nil) then --Use default value
1 vgsstop = 10
end --if

if (1 _vgsstop > 10) then --Coerce value
1 vgsstop = 10
end --if

if (1 _vgssteps == nil) then --Use default value
1 vgssteps = 5
end --if

if (1_vgssteps > 100) then --Coerce value
1 vgssteps = 100
end --if

local 1 vgsstep = (1 vgsstop - 1 vgsstart)/ (1 vgssteps - 1) --Vgs step size
local 1 vgssource val = 1 vgsstart --Source value during sweep
local 1 _vgs_iteration = 1 --Iteration variable

if (1_vdsstart == nil) then --Use default value
1 vdsstart = 0
end --if

if (1_vdsstart > 10) then --Coerce value
1 vdsstart = 10
end --if

A-44

APPENDIX A
Scripts

if (1_vdsstop == nil) then --Use default value
1 vdsstop = 10
end --if

if (1_vdsstop > 40) then --Coerce value
1 vdsstop = 40

end --if

if (1_vdssteps == nil) then --Use default value
1 vdssteps = 100

end --if

if (1_vdssteps > 2E+2) then --Coerce value
1 vdssteps = 2E+2
end --if

local 1 vdsstep = (1 vdsstop - 1 vdsstart)/ (1 _vdssteps - 1) --Voltage step size

local 1 _vdssource val = 1 vdsstart --Source value during sweep
local 1 vds iteration = 1 --Iteration variable

--Data tables

local 1 vgs data = {} --Create data table for sourced gate-source voltage

local 1 vds data = {} --Create data table for drain-source voltage

local 1 _id data = {} --Create data table for drain-source measured current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Drain-Source (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0

smua.source.limiti = 1_icmpl
smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Gate-Source (SMUB) source and measure settings
smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangei = smub.AUTORANGE ON --Enable measure autorange

A-45

APPENDIX A
Scripts

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output

--Execute sweep
for 1 vgs_iteration = 1, 1 vgssteps do

smub.source.levelv = 1 _vgssource_val

1 vds datall vgs iteration] = {} --Create new row in table
1 id data[l vgs_iteration] = {} --Create new row in table

1 vgs _data[l vgs iteration] = smub.measure.v() --Measure gate-source voltage

for 1 vds_iteration = 1,1 vdssteps do

if (1_vds_iteration == 1) then --Intialize start source value
1 vdssource val = 1 vdsstart
end --if

--delay (1)
1 vds data[l vgs iteration] [1 vds iteration] = smua.measure.v()
--Measure sourced voltage

1 id data[l vgs iteration] [1 vds iteration] = smua.measure.i()
--Measure current

1 vdssource val = 1 vdssource val + 1 vdsstep --Calculate new source
value

if (1_vds_iteration == 1 vdssteps) then --Reinitialize voltage value
after last iteration

1 vdssource val = 1 vdsstart
end --if
smua.source.levelv = 1 vdssource_val --Increment source
end --for

1 vgssource val = 1 _vgssource val + 1 vgsstep --Calculate new source value

end--for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level
smub.source.leveli = 0 --Return source to bias level

A-46

APPENDIX A
Scripts

Print Data(l vgssteps,l vdssteps, 1 vds data, 1 id data, 1 vgs data)

end--function FET Comm Source ()

function Print Data(vgssteps,vdssteps, vds data,id data, vgs_data)

--Print Data to output queue

--Local Variables
local 1 vgssteps = vgssteps
local 1 vdssteps = vdssteps

local 1 _vgs_iteration = 1 --Iteration variable
local 1 vds iteration = 1 --Iteration variable

local 1 vds data = vds_data
local 1 id data = id data
local 1 vgs data = vgs_data

for 1 vgs_iteration = 1, 1 vgssteps do
print (\\u)

print (“Gate-source Bias (V)”, 1 vgs datal[l vgs iteration])
print (“Drain-source Voltage (V)”,”Drain-source Current

for 1 vds_iteration = 1, 1 vdssteps

print (1 _vds data[l vgs iteration] [1 vds iteration], 1 id data[l vgs

iteration] [1 vds iteration])
end --for
end --for

end --function Print Data()

--FET Comm_Source ()

A-47

APPENDIX A
Scripts

Program 10. Transconductance

-- [

Transconductance () :
This program sources a voltage bias on a drain-source of a FET (VDS), sources a voltage on
the gate (VGS1l), and measures the drain-source current (ID1). Then, another source value

(VGS2) is sourced and the IDS2 is measured.

The transconductance (gfs) is then calculated by taking the change in Ids divided by the
change in VGS.

The drain-source voltage (VDS), Transconductance (gfs), gate-source voltage (VGS), and
drain-source current (ID) are returned.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-channel FET

Running this script creates functions that can be used to create a transconductance test
of FETs. The default values are for an N-channel SD210 FET.

The functions created are:
1. Transconductance (vgsstart, vgsstop, vgssteps, vdsbias)
--Default values vgsstart = 0V, vgsstop = 5V, vgssteps = 100, vdsbias =
10V
2. Check Comp ()
See detailed information listed in individual functions.
To run:
1) From Test Script Builder
- Right-click in the program window, select “Run as TSP”
- At the TSP> prompt in the Instrument Control Panel, type Transconductance ()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.18.2007

function Transconductance (vgsstart, vgsstop, vgssteps, vdsbias)--Configure SMUA to source a
user-defined voltage on the

A-48

APPENDIX A
Scripts

--drain-source (Vds) while SMUB performs a fixed voltage bias (Vgs)on the gate-source and
the Ids is measured.
--SMUB then steps to the next base current and the Ic is measured.

--Returns measured Vds, Vgs, Id, gfs values are returned.

--Global variables
local 1 _icmpl = 100E-3 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgsstart = vgsstart --Vgs start voltage

local 1 vgsstop = vgsstop --Vgs sweep stop voltage
local 1 vgssteps = vgssteps --Number of steps in sweep

local 1 _vdsbias = vdsbias --Drain-source voltage

--Default values and level check

if (1_vgsstart == nil) then --Use default value
1 vgsstart = 0
end --if

if (1_vgsstart > 10) then --Coerce value
1 vgsstart = 10
end --if

if (1 _vgsstop == nil) then --Use default value
1 vgsstop = 5
end --if

if (1 _vgsstop > 10) then --Coerce value
1 vgsstop = 10

end --if

if (1 _vgssteps == nil) then --Use default value
1 vgssteps = 20

end --if

if (1_vgssteps > 100) then --Coerce value
1 vgssteps = 100
end --if

local 1 vgsstep = (1 vgsstop - 1 vgsstart)/ (1 _vgssteps - 1) --Vbe step size
local 1 vgssource val = 1 vgsstart --Source value during sweep

local 1 i = 1 --Iteration variable

if (1_vds bias == nil) then --Use default value
1 vds _bias = 10

A-49

APPENDIX A

Scripts

A-50

end --if

if (1_vds _bias > 10) then --Coerce value
1 vds_bias = 10
end --if

--Data tables

local 1 vgs = {} --Create data table for gate-source voltage
local 1 id = {} --Create data table for drain-source current
local 1 gfs = {} --Create data table for transconductance (gfs)

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0

smua.source.limiti = 1_icmpl

smua.measure.autorangei = smua.AUTORANGE ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO
smua.measure.nplc = 1 nplc --Measurement integration rate

smua.source.output = smua.OUTPUT ON --Enable Output

--Configure Base (SMUB) source and measure settings

smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.levelv = 0

smub.source.limiti = 1_icmpl

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output
smua.source.levelv = 1 vds bias

--Execute sweep
for 1 i = 1,1 vgssteps do

if (1_i == 1) then --Intialize start source value
1 vgssource val = 1 vgsstart

end --if

--delay (1)

APPENDIX A
Scripts

1 vgs[1l i] = smub.measure.v() --Measure Vgs
1 id[1_i] = smua.measure.i() --Measure Id

1 vgssource val = 1 _vgssource val + 1 vgsstep --Calculate new source value

if (1_i == 1 vgssteps) then --Reinitialize voltage value after last
iteration
1 vgssource val = 1 _vgsstart
end --if
smub.source.levelv = 1 vgssource val --Increment source
end --for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level
smub.source.levelv = 0 --Return source to bias level

Print Data(l vds bias, 1 vgssteps, 1 vgs, 1 id)
end--function Transconductance ()

function Print Data(vdsbias, vgssteps,vgs, id)
--Calculate Gfs value and print data to output queue

--Local Variables

local 1 vds_bias = vdsbias --Vds bias value

local 1 vgs steps = vgssteps --Number of steps in Vgs sweep
local 1 vgs = vgs --Gate-source Voltage data

local 1 _id = id --Drain-source current data

local 1 gfs = {} --Table for Transconductance calculations
local 1 i = 1 --Iteration variable

--Calculate gfs values and populate table
for 1 i = 1,1 vgs_steps do

if (1 i ~= 1) then --If not the first iteration, calculate gfs
1 gfs[l i] = (1 _id[l i] - 1 id[1 i - 1])/(1 _vgs[l i] - 1 vgs[l i - 1])
--gfs = dId/dvgs
end--1if
end --for

1 i =1 --Reinitialize Vgs iteration variable

A-51

APPENDIX A
Scripts

print (\\u)
print (“vds”, 1 vds bias)
print (“Vgs (V)”,”Id (A)","gfs (s)")

for 1 1 = 2, 1 vgs _steps do
print (1 _vgs[l i],1 id[1 il, 1 gfs[1 i])
end --for
end --function Print Data()
--Transconductance ()
Program 11. Threshold
Program 11A. Threshold (Search)

-- [
FET Thres_ Search() :

This program performs a binary search on the gate-source voltage (VGS) of an FET at a fixed
drain-source voltage (VDS) and searches for a target drain-source current (ID). If the
specified Id is found within the maximum number of iterations, the threshold voltage (VTH)
and drain-source (ID) currents are measured and printed.

If the maximum number of iterations are reached, the program is aborted.
Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-Channel FET

Running this script creates functions that can be used to create a threshold search of
FETs. The default values are for an NPN transistor type 2N5089.

The functions created are:
1. FET Thres Search(vdssource, lowvgs, highvgs, targetid)
--Default values vdssource = 1V, lowvgs = 0.5, highvgs = 2, targetid =
le-6A
2. Check_ Comp ()

See detailed information listed in individual functions.
To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type FET Thres Search()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

A-52

APPENDIX A
Scripts

Revl: JAC 6.26.2007

function FET Thres Search(vdssource, lowvgs, highvgs, targetid) --Configure SMUA to source
a user-defined voltage on

--the drain-source (Vds) while SMUB sources a voltage on --the gate-source (Vgs). VGS is
varied using a binary

--search algorithm between a maximum and minimum Vgs value, and the drain-source current
(Id) is measured.

--If measured value is outside the tolerance, search is performed again until the value
falls within the

--specified range or the iteration limit is reached.

--Returns measured Vds, Vth, and Id.

local 1 _k --binary search loop count variable

local 1 _k max = 20 --Maximum loop counts

local 1 vds_source = vdssource --vdssource value

local 1 high vgs = highvgs --Start Ib high limit

local 1 low vgs = lowvgs --Start Ib lo limit

local 1 target id = targetid --Target Ic for binary search
local 1 nplc =1

local 1 vgs source = 0--Gate-sourced voltage
local 1_id meas --Drain-source measured voltage

--Default values and level check

if (1_vds_source == nil) then --Use default value
1 vds _source = 0.5

end --if

if (1_low vgs == nil) then --Use default value
1 low vgs = 0.5

end --if

if (1_high vgs == nil) then --Use default value
1 high vgs = 1.1
end --if

if (1_target_id == nil) then --Use default value
1 target_id = le-6

end --if
smua.reset () --Reset SMU
smub.reset () --Reset SMU

A-53

APPENDIX A

Scripts

smua
smub

smua.
smua.

errorqueue.clear ()

smua.source.limiti =

smua

--Clear the error queue

.measure.nplc = 1 nplc --Measurement integration rate
.measure.nplc = 1 nplc --Measurement integration rate

source.func = smua.OUTPUT_DCVOLTS
source.autorangev = smua.AUTORANGE ON --Enable source autorange

(100 * 1 target_id) --Set compliance value

.measure.autorangev = smua.AUTORANGE ON --Enable measure autorange

smub.source.func = smub.OUTPUT DCVOLTS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorange
smub.source.limiti = 1 _high vgs

smub.source.limitv = 6

smub

--Start test
smua.source.levelv = 1 vds source --Set source level
smub.source.levelv =

.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

0 --Set source level

smua.source.output = smua.OUTPUT ON --Enable output
smub.source.output = smub.OUTPUT ON --Enable output

delay(0.001) --Delay

1 comp val = Check Comp() --check compliance

if 1 comp val == true

smua.source.output
smub.source.output

smua.source.levelv
smub.source.levelv

else

value

A-54

then --If unit is in compliance, end

smua.OUTPUT_OFF --Disable output
= smub.OUTPUT OFF --Disable output

0 --Return source to 0
= 0 --Return source to 0

--Search for the right base current

repeat --Repeat search until measured Ic is within 5% of target, or iteration
maximum reached, or compliance.

1k=1k+

1 vgs_source
(Binary Search)

smub.source.

delay(0.01)

1 --Increment
= ((1_high vgs-1 low vgs)/2) + 1 low vgs --Determine source

levelv = 1_vgs_source --Program new source value
--Source delay

APPENDIX A
Scripts

1 comp val = Check Comp() --check compliance

if 1 comp val == true then --If unit is in compliance, end
smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv = 0 --Return source to 0
smub.source.levelv = 0 --Return source to 0

else
1 id meas = smua.measure.i() --Measure Id
if (1_target_id < 1_id meas) then --Compare measurement with
target value
1 high vgs = 1 _vgs_source
else

1 low vgs = 1 _vgs_source
end --end if
end --ifelse

if 1 id meas == nil then --If no measurement taken, initialize to 0 to avoid
arithmatic error
--in until statement below
1 id meas = 0
end --if

until ((math.abs(l id meas - 1 target id) < (0.05*1 target id))or(l _k>1 k max))
or(l_comp val == true) --

--iteration limit reached
if (1 k > 1 k max) then
print (“Iteration Limit Reached!!”)
end --end if

smua.source.output = smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

print (“*Id Data:”, 1_id meas) --Print Id data
print (“Vgs Data:”, 1 vgs source) --Print Vgs
print (“Vds Data:”,1 vds source) --Print Vds
end --ifelse
end--function FET Thres Search()
function Check Comp() --Function checks state of compliance, if true, prints warning and

returns
--to run test()

A-55

APPENDIX A
Scripts

local 1 comp val = false --Initialize local variable

1 comp val = smua.source.compliance --Check compliance

if 1 comp val == true then
print (™)
print (*SMU Source in Compliance!”)
print (“Ensure proper connections, stable device, and settings are correct”)
print (“*Rerun Test”)
print (™)
end --if

return 1 _comp val
end --function Check Comp ()

--FET Thres_Search()

Program 11B. Threshold (Fast)

-- [
FET Thres Fast()

This program applies a bias to the drain-source of an FET (VDS) and sweeps current on the
drain-source (ID) and the threshold voltage (VTH) at each ID value is measured.

*NOTE: Due to connection scheme, negative values are to be programmed for the sourced
values. The absolute value of the measurements and sourced values are printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument
(1) SD210 N-channel FET

Running this script creates functions that can be used to measure the threshold of FETs.
The default values are for an N-channel FET type SD210.

The functions created are:
1. FET Thres Fast (vdssource, istart, istop, isteps)
--Default values vdssource = 0.5V, istart = 0.5uA, istop = 1uA, isteps =
10
2. Print Data(isteps, drain curr, thres volt)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type FET Thres Fast ()

2) From an external program

A-56

APPENDIX A

Scripts
- Send the entire program text as a string using standard GPIB Write calls.
Revl: JAC 6.26.2007
11--
—————————————————— Keithley TSP Function ------------------
function FET Thres Fast (vdssource, istart, istop, isteps) --Configure SMUB to source a bias

current

--on the drain-source (Id) and SMUA performs a voltage sweep on the drain-source (Vds)
from start to

--stop in a user-defined number of steps.

--Returns Vth, Vds, and Id values.

--Global variables
local 1 irange = 100e-6 --Drain current source range
local 1 _vcmpl = 11 --Drain source compliance

local 1 vrange = 40 --Drain-source voltage source range
local 1 _icmpl = 100e-3 --Drain source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 istart = istart --Drain sweep start current
local 1 istop = 1istop --Drain sweep stop current
local 1 isteps = isteps --Number of steps in sweep

local 1 vds_source = vdssource --Vds source value

--Default values and level check

if (1_vds_source == nil) then --Use default value
1 vds_source = -0.5
end --if

if (1_vds_source > 0) then --Coerce value

1 vds source = -1 vds_source

end --if

if (1_istart == nil) then --Use default value
1 istart = -500e-9

end --if

if (1_istart > 0) then --Coerce value

1 istart = -1 _istart
end --if
if (1_istop == nil) then --Use default value

A-57

APPENDIX A
Scripts

1 istop = -le-6
end --if

if (1_istop > 0) then --Coerce value
1 istop = -i _stop

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 10

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100
end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size
local 1 _isource val = 1 istart --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables
local 1 _thres volt
local 1 _drain_curr

{} --Create data table for threshold voltage
{} --Create data table for emitter current

smua.reset () --Reset SMU
smub.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure emitter current (SMUA) source and measure settings
smua.source.func = smua.OUTPUT DCVOLTS

smua.source.autorangev = smua.AUTORANGE ON --Enable source autorange
smua.source.levelv = 0

smua.source.limiti = 1 _icmpl

smua.sense = smua.SENSE REMOTE --Enable Remote (4-wire) sensing
smua.source.output = smua.OUTPUT ON --Enable Output

--Configure collector/emitter (SMUB) source and measure settings
smub.source.func = smub.OUTPUT DCAMPS

smub.source.autorangev = smub.AUTORANGE ON --Enable source autorang
smub.source.levelv = 0

smub.source.limitv = 1_vcmpl

smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO AUTO
smub.measure.nplc = 1 nplc --Measurement integration rate

smub.source.output = smub.OUTPUT ON --Enable Output

smua.source.levelv = 1 vds source --Program source

A-58

APPENDIX A
Scripts

--Execute sweep
for 1 i =1, 1 isteps do

smub.source.leveli = 1 isource val
delay(0.01)
1 thres volt[l i] = smub.measure.v() --Measure threshold voltage (Vt)

smua.measure.i() --Measure drain current

1 drain curr[l i]
1 isource val = 1 isource val + 1 _istep --Calculate new source value
end--for

smua.source.output smua.OUTPUT OFF --Disable output
smub.source.output = smub.OUTPUT OFF --Disable output

smua.source.levelv 0 --Return source to bias level

smub.source.leveli = 0 --Return source to bias level

Print Data(l isteps, 1 drain curr, 1 thres volt, 1 vds source)
end--function DC Gain Fast ()

function Print Data(isteps, drain curr, thres volt, vdssource)
--Print Data to output queue

--Local Variables

local 1 isteps = isteps

local 1 i = 1 --Iteration variable

local 1 drain curr = drain curr --Drain current table

local 1 thres volt = thres volt --Threshold voltage table
local 1 _vds_source = vdssource --Drain-source voltage value

print (™)
print (“Drain-source Voltage (V)”)

print (math.abs (1 _vds source))

print (\\II)
print (“Threshold Voltage (V)”, “Drain Current (A)")

for 1 i =1, 1 isteps do
print (math.abs (1 _thres volt[l i]), math.abs(l drain curr[l i]))
end --for

end --function Print Data()
--FET Thres Fast()

A-59

APPENDIX A
Scripts

Section 5. Using Substrate Bias

Program 12. Substrate Current vs. Gate-Source Voltage (FET I vs. V)

-- 1
FET Isb Vgs():

This program applies a voltage bias on the drain-source (VDS), a voltage bias on the
substrate-source (VSB) of an FET, then sweeps the gate-source voltage (VGS) from a user-
defined stop, through a defined number of steps.

At each point, the VGS, ID, and ISB are measured and the data is printed.
Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument

(1) Keithley Model 2636 System Sourcemeter instrument (Required for low current
measurement)

(1) Crossover Ethernet Cable

(1) SD210 N-channel FET

- Connect the single-channel SourceMeter instrument to the dual-channel master using a
crossover Ethernet cable.

- Connect the test fixture to both units using appropriate cables.

- Turn on the SourceMeter instruments and allow the units to warm up for two hours for
rated accuracy.

Configure the TSP-Link communications for each instrument:

Slave: A single-channel instrument such as the Model 2601, 2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602, 2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the Master and press ENTER.

6. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

A-60

APPENDIX A

Scripts

Running this script creates functions that can be used to measure the Isb v. Vgs
characteristics of FETs.

The functions created are:
1. FET Isb Vgs(vdssource, vsbsource,vgsstart,vgsstop, vgssteps) --Default values vdssource
= 1V,
--vgsstart = 0V,vgsstop = 10V, vgssteps = 10

2. Print Data(l vgs steps, 1 id curr, 1 vgs volt,l isb curr)

See detailed information listed in individual functions.
To run:
1) From Test Script Builder

- Right-click in the program window, select “Run as TSP”

- At the TSP> prompt in the Instrument Control Panel, type FET Isb Vgs()
2) From an external program

- Send the entire program text as a string using standard GPIB Write calls.
Revl: JAC 5.22.2007
11--
—————————————————— Keithley TSP Function ------------------
function FET Isb Vgs(vdssource, vsbsource,vgsstart,vgsstop, vgssteps) --Configure node 1

SMUA to source drain-source

--voltage (Vds), node 2 SMUA to apply a voltage bias on the substrate-source (Vsb)and
perform a voltage sweep from

--start to stop in user-defined steps using node 1 SMUB on the gate-source (Vgs). At each
point, Vgs and Isb are

--measured and printed.

--Global variables

local 1 _vds_source = vdssource --Drain-source source voltage
local 1 _vsb_source = vsbsource --Substrate-source bias voltage
local 1 icmpl = 100E-3 --Source compliance

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgs start = vgsstart --Gate-source sweep start voltage
local 1 vgs stop = vgsstop --Gate-source sweep stop voltage
local 1 vgs_steps = vgssteps --Number of steps in sweep

--Default values and level check
if (1_vds_source == nil) then --Use default value

A-61

APPENDIX A
Scripts

1 vds source =1
end --if

if (1_vds_source > 1) then --Coerce value
1 vds source =1

end --if

if (1_vsb_source == nil) then --Use default value
1 vsb_source = -1

end --if

if (1_vsb_source > 0) then --Coerce value
1 vsb_source = -1
end --if

if (1_vgs_start == nil) then --Use default value
1 vgs_start = 0
end --if

if (1_vgs_start > 10) then --Coerce value
1 vgs _start = 10

end --if

if (1_vgs_stop == nil) then --Use default value
1 vgs _stop = 10

end --if

if (1_vgs_stop > 10) then --Coerce value
1 vgs _stop = 10

end --if

if (1_vgs_steps == nil) then --Use default value
1 vgs _steps = 10

end --if

if (1_vgs_steps > 1E3) then --Coerce value
1 vgs _steps = 1E3
end --if

local 1 step = (1 _vgs stop - 1 vgs start)/ (1 vgs steps - 1) --Current step size
local 1 source val = 1 vgs start --Source value during sweep
local 1 i = 1 --Iteration variable

--Data tables

local 1 isb curr = {} --Create data table for substrate-source current

local 1 id curr = {} --Create data table for drain-source current

local 1 vgs volt = {} --Create data table for gate-substrate voltage
local 1 vds volt = {} --Create data table for drain-substrate voltage

node[1] .smua.reset () --Reset SMU

A-62

APPENDIX A
Scripts

node[1] .smub.reset () --Reset SMU
node [2] .smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure drain-source SMU (TSP-Link Node[l] SMUA) source and measure settings

node [1]
node [1]
autorange
node [1]
node [1]
node [1]
autorange

node [1]

.smua.source.func = node[1].smua.OUTPUT_ DCVOLTS
.smua.source.autorangev = node[1l].smua.AUTORANGE ON --Enable source

.smua.source.levelv = 1 _vds_source

.smua.source.limiti = 1 icmpl
.smua.measure.autorangev = node [1].smua.AUTORANGE ON --Enable measure

.smua.measure.nplc = 1 nplc --Measurement integration rate

--Configure gate-source SMU (TSP-Link Node[l] SMUB) source and measure settings

node [1]
node [1]
autorange
node [1]
node [1]
node [1]

node [1]

.smub.source.func = node[1].smub.OUTPUT_ DCVOLTS
.smub.source.autorangev = node[1].smub.AUTORANGE ON --Enable source

.smub.source.levelv = 1 _vds_source
.smub.source.limiti = 1 icmpl

.smub.measure.autorangev = smub.AUTORANGE ON --Enable measure autorange

.smub.measure.nplc = 1 nplc --Measurement integration rate

--Configure substrate-source SMU (TSP-Link Node[2] SMUA) source and measure settings

node [2]
node [2]
autorange
node [2]
node [2]
node [2]
autorange

node [2]
node [1]

node [1]
node [2]

.smua.source.func = node[2].smua.OUTPUT_DCVOLTS
.smua.source.autorangev = node[2].smua.AUTORANGE ON --Enable source

.smua.source.levelv = 1 _vsb_source
.smua.source.limiti = 1 icmpl
.smua.measure.autorangev = node [2].smua.AUTORANGE ON --Enable measure

.smua.measure.nplc = 1 nplc --Measurement integration rate
.smua.source.output = smua.OUTPUT _ON --Enable Output

.smub.source.output = smub.OUTPUT _ON --Enable Output
.smua.source.output smua.OUTPUT ON --Enable Output

--Execute sweep
for 1 1 =1, 1 vgs steps do

current

--smua.source.leveli = 1 source val
delay(0.010) --Delay

1 id curr[l_i] = node[l].smua.measure.i() --Measure drain-source current
1 vgs_volt[l_i] = node([1l].smub.measure.v() --Measure gate-source voltage
1 isb curr[l_i] = nodel[2].smua.measure.i() --Measure substrate-source

A-63

APPENDIX A

Scripts
1 source _val = 1 _source val + 1 _step --Calculate new source value
node [1] .smub.source.levelv = 1 source val --Increment source
end--for

node[1] .smua.source.output node [1] .smua.OUTPUT OFF --Disable output
node [1] .smub.source.output = node[1].smub.OUTPUT OFF --Disable output
node [2] . smua.source.output node [2] .smua.OUTPUT OFF --Disable output

Print Data(l vgs steps, 1 id curr, 1 vgs volt,l isb curr)
end--function Diode Fwd Chr ()

function Print Data(vgssteps,idcurr,vgsvolt, isbcurr)
--Print Data to output queue

--Local Variables

local 1 vgs steps = vgssteps
local 1 id curr = idcurr
local 1 _vgs_volt = vgsvolt

local 1 isb curr = isbcurr

print (*Drain-source current (A):”, “Gate-source voltage(V):”, “Substrate-source
current (A) : ")

for 1 1 =1, 1 vgs steps do
print (1 _id curr([l i], 1 vgs volt[l i], 1 isb curr[l i])
end

end --function Print Data()

--FET Isb Vgs()

Program 13. Common-Source Characteristics with Substrate Bias

-- [
FET Comm Source Vsb():

This program applies a bias to the substrate-source of an FET (VSB) and a staircase sweep
on the gate-source voltage (VGS). At each VGS value, the drain-source voltage (VDS) is
also swept linearly.

At each point, the VDS and IDS are measured and printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument

A-64

APPENDIX A
Scripts

(1) Keithley Model 2636 System Sourcemeter instrument (Required for low current
measurement)

(1) Crossover Ethernet Cable

(1) SD210 N-Channel MOSFET

- Connect the single-channel SourceMeter instrument to the dual-channel master using a
crossover Ethernet cable.

- Connect the test fixture to both units using appropriate cables.

- Turn on the SourceMeter instrument and allow the unit to warm up for two hours for rated
accuracy.

Configure the TSP-Link communications for each instrument:

Slave: A single-channel instrument such as the Model 2601, 2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602, 2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the Master and press ENTER.

6. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

Running this script creates functions that can be used to measure the common source
characteristics of an N-channel MOSFET with substrate bias. The default values are for an
N-channel MOSFET type SD210.

The functions created are:
1. FET Comm Source Vsb(vgsstart, vgsstop, vgssteps, vdsstart, vdsstop,
vdssteps, vsbsource)
--Default values vgsstart = 0, vgsstop = 10V, vgssteps = 5, vdstart = 0V,
vdstop = 10V,
--vdsteps = 100, vsbsource = -1V
2. Print Data(vgssteps,vdssteps, vds data,Id data, vgs data, vsbsource)

See detailed information listed in individual functions.

1) From Test Script Builder

A-65

APPENDIX A
Scripts

- At the TSP> p rompt in the Instrument Control Panel, type FET Comm Source Vsb()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 6.18.2007

11--

--TODO: Update Node info

function FET Comm Source Vsb (vgsstart, vgsstop, vgssteps, vdsstart, vdsstop, vdssteps,
vsbsource)

--Configure node 1 SMUB to source a bias voltage on the gate-source (Vgs), node 1 SMUA
performs a voltage

--sweep on the drain-source Vds) from start to stop in a user-defined number of steps, and
node 2 SMUA is

--used to bias the substrate (Vsb). Node 1 SMUB then increments to next bias value and
continues to stop

--value.

--Returns measured Vgs, Vds, Vsb, and Id values.

--Global variables
local 1 vrange = 40 --
local 1 icmpl = 100E-3 --

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables

local 1 vgsstart = vgsstart --Gate-source sweep start voltage
local 1 vgsstop = vgsstop --Gate-source sweep stop voltage
local 1 vgssteps = vgssteps --Number of steps in sweep

local 1 vdsstart = vdsstart --Drain-source sweep start voltage
local 1 vdsstop = vdsstop --Drain-source sweep stop voltage
local 1 vdssteps = vdssteps --Number of steps in sweep

local 1 _vsbsource = vsbsource --Substrate bias value

--Default values and level check

if (1_vgsstart == nil) then --Use default value
1 vgsstart = 0
end --if

if (1_vgsstart > 10) then --Coerce value
1 vgsstart = 10

A-66

APPENDIX A
Scripts

end --if

if (1 _vgsstop == nil) then --Use default value
1 vgsstop = 10
end --if

if (1 _vgsstop > 10) then --Coerce value
1 vgsstop = 10
end --if

if (1 _vgssteps == nil) then --Use default value
1 vgssteps = 5
end --if

if (1_vgssteps > 100) then --Coerce value
1 vgssteps = 100
end --if

local 1 vgsstep = (1 vgsstop - 1 vgsstart)/ (1 vgssteps - 1) --Vgs step size
local 1 vgssource val = 1 vgsstart --Source value during sweep
local 1 _vgs_iteration = 1 --Iteration variable

if (1_vdsstart == nil) then --Use default value
1 vdsstart = 0
end --if

if (1_vdsstart > 10) then --Coerce value
1 vdsstart = 10
end --if

if (1_vdsstop == nil) then --Use default value
1 vdsstop = 10
end --if

if (1_vdsstop > 40) then --Coerce value
1 vdsstop = 40
end --if

if (1_vdssteps == nil) then --Use default value
1 vdssteps = 100
end --if

if (1_vdssteps > 2E+2) then --Coerce value
1 vdssteps = 2E+2
end --if

local 1 vdsstep = (1 vdsstop - 1 vdsstart)/ (1 _vdssteps - 1) --Voltage step size

local 1 _vdssource val = 1 vdsstart --Source value during sweep
local 1 vds iteration = 1 --Iteration variable

A-67

APPENDIX A

Scripts
if (1_vsbsource == nil) then --Use default value
1 vsbsource = -1
end --if
if (1_vsbsource > 0) then --Coerce value
1 vsbsource = -1_vsbsource
end --if
if (1_vsbsource < -40) then --Coerce value
1 vsbsource = -40
end --if
--Data tables
local 1 vgs data = {} --Create data table for sourced gate-source voltage
local 1 vds data = {} --Create data table for drain-source voltage
local 1 _id data = {} --Create data table for drain-source measured current
node [1] .smua.reset () --Reset SMU
node [1] .smub.reset () --Reset SMU
node [2] .smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue
--Configure Drain-Source (node [1] SMUA) source and measure settings
node [1] .smua.source.func = node[1].smua.OUTPUT_ DCVOLTS
node [1] .smua.source.autorangev = node[1].smua.AUTORANGE ON --Enable source
autorange
node [1] .smua.source.levelv = 0
node [1] .smua.source.limiti = 1 _icmpl
node [1] .smua.measure.autorangei = node[1].smua.AUTORANGE ON --Enable measure
autorange
node [1] .smua.measure.autozero = node[1] .smua.AUTOZERO AUTO
node [1] .smua.measure.nplc = 1 nplc --Measurement integration rate
node [1] .smua.source.output = node[1].smua.OUTPUT ON --Enable Output
--Configure Gate-Source (node [1] SMUB) source and measure settings
node [1] .smub.source.func = node[1].smub.OUTPUT DCVOLTS
node [1] .smub.source.autorangev = node[1].smub.AUTORANGE ON --Enable source
autorange
node [1] .smub.source.levelv = 0
node [1] .smub.source.limiti = 1 _icmpl
node [1] .smub.measure.autorangei = node[1].smub.AUTORANGE ON --Enable measure
autorange

node [1] .smub.measure.autozero = node[1] .smub.AUTOZERO AUTO
node [1] .smub.measure.nplc = 1 nplc --Measurement integration rate
node [1] .smub.source.output = node[1].smub.OUTPUT ON --Enable Output

A-68

APPENDIX A

Scripts
--Configure Substrate (node [2] SMUA) source and measure settings
node [2] .smua.source.func = node[2] .smua.OUTPUT_ DCVOLTS
node [2] .smua.source.autorangev = node [2] .smua.AUTORANGE ON --Enable source
autorange
node [2] .smua.source.levelv = 0
node [2] .smua.source.limiti = 1 _icmpl
node [2] . smua.measure.autorangei = node[2].smua.AUTORANGE ON --Enable measure
autorange
node [2] . smua.measure.autozero = node[2] .smua.AUTOZERO AUTO
node [2] .smua.measure.nplc = 1 nplc --Measurement integration rate
node [2] .smua.source.output = node[2].smua.OUTPUT ON --Enable Output
--Enable Substrate Bias (node [2] SMUR)
node [2] .smua.source.levelv = 1 vsbsource
--Execute sweep
for 1 vgs iteration = 1, 1 vgssteps do
node [1] .smub.source.levelv = 1 _vgssource val
1 vds datall vgs iteration] = {} --Create new row in table
1 id data[l vgs_iteration] = {} --Create new row in table
1 vgs_datall_vgs_iteration] = node[l].smub.measure.v() --Measure gate-source
voltage
for 1 vds_iteration = 1,1 vdssteps do
if (1_vds_iteration == 1) then --Intialize start source value
1 vdssource val = 1 vdsstart
end --if
--delay (1)
1 vds_datall_vgs_iteration] [1_vds_iteration] = node[l].smua.
measure.v ()
--Measure sourced voltage
1 id data[l_vgs_iteration] [1_vds_iteration] = node[1l].smua.measure.i()

--Measure current
1 vdssource val = 1 vdssource val + 1 vdsstep --Calculate new source

value
if (1_vds_iteration == 1 vdssteps) then --Reinitialize voltage value
after last
--iteration
1 vdssource val = 1 vdsstart
end --if

A-69

APPENDIX A
Scripts

node [1] .smua.source.levelv = 1 vdssource val --Increment source
end --for

1 vgssource val = 1 vgssource val + 1 vgsstep --Calculate new source value

end--for

node [1] .smua.source.output = node[1l].smua.OUTPUT OFF --Disable output
node [1] .smub.source.output = node[1].smub.OUTPUT OFF --Disable output
node [2] .smua.source.output = node[2].smua.OUTPUT OFF --Disable output

node[1] .smua.source.levelv = 0 --Return source to bias level
node [1] .smub.source.leveli = 0 --Return source to bias level
node [2] .smua.source.levelv = 0 --Return source to bias level

Print Data(l vgssteps,l vdssteps, 1 vds data, 1 id data, 1 vgs data, 1 vsbsource)
end--function FET Comm Source Vsb()

function Print Data(vgssteps,vdssteps, vds data,id data, vgs data, vsbsource)
--Print Data to output queue

--Local Variables

local 1 vgssteps = vgssteps

local 1 vdssteps = vdssteps

local 1 _vgs_iteration = 1 --Iteration variable
local 1 vds iteration = 1 --Iteration variable
local 1 vds data = vds_data

local 1 _id data = id_data

local 1 vgs data = vgs_data

local 1 vsbsource = vsbsource

for 1 vgs_iteration = 1, 1 vgssteps do

print (™)

print (“Substrate Bias (V)”, 1 vsbsource)

print (“Gate-source Bias (V)”, 1 vgs datal[l vgs iteration])
print (*Drain-source Voltage (V)”,”Drain-source Current (A)")

for 1 vds_iteration = 1, 1 vdssteps do
print (1 _vds data[l vgs iteration] [1 vds iteration], 1 id data[l vgs
iteration] [1 vds iteration])
end --for
end --for

end --function Print Data()

--FET Comm_Source Vsb()

A-70

APPENDIX A
Scripts

Program 14. Common-Emitter Characteristics with Substrate Bias

-- [
BJT Comm Emit Vsb(): USES TABLES

This program applies a bias to the base of a BJT (IB), a bias to the substrate (VSB), and
sweeps voltage on the collector/emitter (VCE).
The VCE, IB, and IC are then printed.

Required equipment:

(1) Dual-channel Keithley Series 2600 System SourceMeter instrument

(1) Keithley Model 2636 System Sourcemeter instrument (Required for low current
measurement)

(1) Crossover Ethernet Cable

(1) 2N5089 NPN Transistor or equivalent with substrate bias

- Connect the single-channel SourceMeter instrument to the dual-channel master using a
crossover Ethernet cable.

- Connect the test fixture to both units using appropriate cables.

- Turn on the SourceMeter instruments and allow the unit to warm up for two hours for
rated accuracy.

Configure the TSP-Link communications for each instrument:

Slave: A single-channel instrument such as the Model 2601, 2611, or 2635.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 2 and press ENTER.

Master: A dual-channel instrument such as the Model 2602, 2612, or 2636.

1. Press the MENU key to access MAIN MENU.

2. Select the COMMUNICATION menu. (Skip this step if the Series 2600 instruments
used have firmware Revision 1.4.0 or later installed.)

3. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

4. Select the NODE menu.

5. Set the NODE number to 1 for the Master and press ENTER.

6. Select the TSPLINK CFG menu. (If the Series 2600 instruments used have firmware
Revision 1.4.0 or later installed, the menu name should be TSPLINK.)

7. Select the RESET to initialize the TSP-Link.

Running this script creates functions that can be used to measure the common emitter
characteristics of transistors. The default values are for an NPN transistor type 2N5089.

A-71

APPENDIX A
Scripts

The functions created are:
1. BJT Comm Emit Vsb(istart, istop, isteps, vstart, vstop, vsteps,vsbsource)
--Default values istart = 10uA, istop = 50uA, isteps = 5, vstart = 0V, vstop = 10V,
--vsteps =100, vsbsource v
2. Print Data(isteps,vsteps, ce volt,ce curr, base curr)

See detailed information listed in individual functions.

1) From Test Script Builder
- At the TSP> prompt in the Instrument Control Panel, type BJT Comm Emit Vsb()

2) From an external program
- Send the entire program text as a string using standard GPIB Write calls.

Revl: JAC 7.23.2007

function BJT Comm Emit Vsb(istart, istop, isteps, vstart, vstop, vsteps, vsbsource)
--Configure node 1 SMUB to source a --bias current on the base and node 1 SMUA performs a
voltage sweep on the Collector//Emitter from start to stop in a --user-defined number of
steps.
--Node 2 SMUA delivers a user-defined voltage bias to the substrate. Node 1 SMUB then
increments to next bias value
--and continues to stop value.

--Returns measured voltage and current
values.

--Global variables
local 1 irange = 100E-6 --Base current source range

local 1 _vcmpl = 1 --Base source compliance

local 1 vrange = 40 --Collector-emitter voltage source range
local 1 icmpl = 100E-3 --Collector-emitter source compliance

local 1 _vsbsource = vsbsource --Substrate bias value

--Shared local variables
local 1 nplc = 1 --Integration rate of measurement

--Local sweep variables
local 1 _istart = istart --Base sweep start current
local 1 istop = 1istop --Base sweep stop current

local 1 isteps = isteps --Number of steps in sweep

local 1 vstart = vstart --Collector-emitter sweep start voltage

A-72

APPENDIX A
Scripts

local 1 vstop = vstop --Collector-emitter sweep stop voltage
local 1 vsteps = vsteps --Number of steps in sweep

--Default values and level check

if (1_istart == nil) then --Use default value
1 istart = 10E-6
end --if

if (1_istart > 100E-6) then --Coerce value
1 istart = 100E-6
end --if

if (1_istop == nil) then --Use default value
1l istop = 50E-6
end --if

if (1_istop > 500E-6) then --Coerce value
1 istop = 500E-6

end --if

if (1_isteps == nil) then --Use default value
1 isteps = 5

end --if

if (1_isteps > 100) then --Coerce value
1 isteps = 100
end --if

local 1 istep = (1 istop - 1 istart)/ (1 _isteps - 1) --Current step size

local 1 _isource val = 1 _istart --Source value during sweep
local 1 i = 1 --Iteration variable

if (1_vstart == nil) then --Use default value
1 vstart = 0
end --if

if (1_vstart > 100E-3) then --Coerce value
1 vstart = 100E-3
end --if

if (1_vstop == nil) then --Use default value
1 vstop = 10
end --if

if (1_vstop > 40) then --Coerce value
1 vstop = 40
end --if

if (1_vsteps == nil) then --Use default value
1 vsteps = 100

A-73

APPENDIX A
Scripts

end --if

if (1_vsteps > 2E+2) then --Coerce value
1 vsteps = 2E+2
end --if

local 1 vstep = (1 vstop - 1 vstart)/ (1 vsteps - 1) --Voltage step size
local 1 _vsource val = 1 vstart --Source value during sweep
local 1 v = 1 --Iteration variable

if (1_vsbsource == nil) then --Use default value
1 vsbsource = 1
end --if

if (1_vsbsource > 40) then --Coerce value
1 _vsbsource = 40
end --if

--Data tables

local 1 base curr = {} --Create data table for sourced current

local 1 ce volt = {} --Create data table for collector-emitter measured voltage
local 1 ce curr = {} --Create data table for collector-emitter measured current

node[1] .smua.reset () --Reset SMU
node[1] .smub.reset () --Reset SMU
node [2] .smua.reset () --Reset SMU
errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (Node 1 SMUA) source and measure settings

node [1] .smua.source.func = node[1].smua.OUTPUT_ DCVOLTS

node [1] .smua.source.autorangev = node[1].smua.AUTORANGE ON --Enable source
autorange

node [1] .smua.source.levelv = 0

node [1] .smua.source.limiti = 1 _icmpl

node [1] .smua.measure.autorangei = node[1l].smua.AUTORANGE ON --Enable measure
autorange

node [1] .smua.measure.autozero = node[1] .smua.AUTOZERO AUTO
node [1] .smua.measure.nplc = 1 nplc --Measurement integration rate

node [1] .smua.source.output = node[1].smua.OUTPUT ON --Enable Output

--Configure Base (Node 1 SMUB) source and measure settings

node [1] .smub.source.func = node[1].smub.OUTPUT_ DCAMPS

node [1] .smub.source.autorangei = node[1].smub.AUTORANGE ON --Enable source
autorange

node [1] .smub.source.leveli = 0

node [1] .smub.source.limitv = 1_vcmpl

A-74

APPENDIX A
Scripts

node [1]
autorange

node [1]
node [1]

node [1]

. smub

. smub
. smub

. smub

.measure.autorangev = node[1].smub.AUTORANGE ON --Enable measure

.measure.autozero = node[1].smub.AUTOZERO AUTO
.measure.nplc = 1 nplc --Measurement integration rate

.source.output = node[1l].smub.OUTPUT ON --Enable Output

--Configure Substrate Bias (Node 2 SMUA) source settings

node [2]
node [2]
autorange
node [2]
node [2]

autorange

node [2] .

node [2]

node [2]

. sSmua
. sSmua

. sSmua

.smua.
node [2] .

smua

smua
. sSmua

. sSmua

.source.func = node[2].smua.OUTPUT_DCVOLTS
.source.autorangev = node[2] .smua.AUTORANGE ON --Enable source

.source.levelv = 0
source.limiti = 1 icmpl
.measure.autorangei = node[2].smua.AUTORANGE ON --Enable measure

.measure.autozero = node[2] .smua.AUTOZERO AUTO
.measure.nplc = 1 nplc --Measurement integration rate

.source.output = node[2].smua.OUTPUT ON --Enable Output

--Execute sweep
for 1 i =1, 1 isteps do

voltage

iteration

node [2] .smua.source.levelv = 1 vsbsource
node [1] .smub.source.leveli = 1 isource_val

1 ce volt[1l i]
1 ce curr(l i]

{} --Create new row in table
{} --Create new row in table

1 base curr[l i] = node[1l].smub.measure.i() --Measure base current

for 1 v = 1,1 _vsteps do

if (1_v == 1) then --Intialize start source value
1 vsource val = 1 _vstart
end --if
--delay (1)
1 ce volt[1l i][1 v] = node[l].smua.measure.v() --Measure sourced
1 ce curr[l i][1 v] = node[l].smua.measure.i() --Measure current

1 vsource val = 1 vsource val + 1 _vstep --Calculate new source value

if (1_v == 1 _vsteps) then --Reinitialize voltage value after last

A-75

APPENDIX A
Scripts

1 vsource val = 1 _vstart
end --if

node [1] .smua.source.levelv = 1 vsource val --Increment source
end --for
1 isource val = 1 isource val + 1 _istep --Calculate new source value
end--for

node [1] .smua.source.output = node[1l].smua.OUTPUT OFF --Disable output
node [1] .smub.source.output = node[1].smub.OUTPUT OFF --Disable output
node [2] .smua.source.output = node[2].smua.OUTPUT OFF --Disable output

node[1] .smua.source.levelv = 0 --Return source to bias level
node [1] .smub.source.leveli = 0 --Return source to bias level
node [2] .smua.source.levelv = 0 --Return source to bias level

Print Data(l isteps,l vsteps, 1 ce volt, 1 ce curr, 1 base curr,l vsbsource)
end--function BJT Comm_ Emit ()

function Print Data(isteps,vsteps, ce volt,ce curr, base curr, vsbsource)
--Print Data to output queue

--Local Variables

local 1 isteps = isteps

local 1 vsteps = vsteps

local 1 i = 1 --Iteration variable
local 1 v = 1 --Iteration variable
local 1 _ce volt = ce_volt

local 1 ce curr = ce_curr

local 1 base curr = base curr
local 1 vsbsource = vsbsource

for 1 i =1, 1 isteps do

print (™)

print (“Base Current Bias (A)”, 1 base curr[l i])
print (“Substrate Bias (V)”, 1 vsbsource)

print (*Emitter Voltage (V)”,”Emitter Current (A)”")

for 1 v = 1, 1 vsteps do
print (1 _ce volt[1l i][1 v], 1 ce curr[l i]([1 vI])
end --for
end --for

end --function Print Data()

A-76

APPENDIX A
Scripts

--BJT Comm Emit Vsb()

AT7

APPENDIX A
Scripts

Section 6. High Power Tests

Program 15. High Current with Voltage Measurement

-- [
KI2602Example High Current.tsp

This program is intended to perform the following:

1. Set up both SMUs of a Model 2602 for current bias and measure voltage on specific
intervals.

2. Deliver up to 2A @ 40V (1A @ 40V per SMU) by wiring each SMU in parallel

Wiring: SMUA Hi to SMUB Hi, SMUA Lo to SMUB Lo

WARNING: If either SMU reaches a compliance state, the instrument, device, or both
could be damaged.

System Requirements: 260x Firmware version: 1.0.2 or newer

Revl: JAC 3.21.2006
Rev2: JAC 10.15.2007

-Change 1 sourcei value to sourcei/2. Desired current value at DUT is now
programmed.

--11]
function RunHighCurrent (sourcei, points)

local 1 sourcei = sourcei/2 --Local variable for Source Current Value
local 1 points = points --Local variable for number of points to sample
local 1 cmpl = 40 --compliance must not be reached!

--Configure display
display.clear ()
display.screen = display.SMUA SMUB

display.smua.measure.func = display.MEASURE DCVOLTS
display.smub.measure.func = display.MEASURE DCVOLTS

-- Configure source and measure settings.
smua.source.output = smua.OUTPUT OFF --Disable Output
smub.source.output = smub.OUTPUT OFF --Disable Output

smua.source.func = smua.OUTPUT DCAMPS --Set Output function
smub . source. func smub.OUTPUT DCAMPS --Set Output function

smua.source.leveli = 0 --Set output level
smub.source.leveli 0 --Set output level

A-78

APPENDIX A
Scripts

smua.
smub.

smua.
smub.

smua
smub

smua
smub

source.rangei
source.rangei

source.limitv
source.limitv

.measure.nplc
.measure.nplc

1
1

.measure.autozero
.measure.autozero

1 sourcei --Set output level
1 sourcei --Set output level

1 cmpl --Set compliance level
1 cmpl --Set compliance level

--Set measurement aperture
--Set measurement aperture

= smua.AUTOZERO AUTO --Set Autozero mode
= smub.AUTOZERO AUTO --Set Autozero mode

-- Setup SMUA buffer to store all the result(s) in and start testing.

smua.

smua

smua

smua

smua.
smub.

smua.
smub.

smua

smua

smua
smub.

nvbufferl.clear() --Clear Nonvolatile buffer

source.output
source.output

source.leveli
source.leveli

.measure.count

.source.output

source.output

.nvbufferl.appendmode = 0 --Append buffer? 0 = No, 1 = Yes
.nvbufferl.collecttimestamps = 0 --Collect Timestamps? 0 = No, 1 = Yes

.nvbufferl.collectsourcevalues = 0 --Collect Source Values? 0 = No, 1 = Yes

smua.OUTPUT _ON --Enable outputs
smua.OUTPUT _ON --Enable outputs

1 sourcei -- Program source to level.
1 sourcei -- Program source to level.

1 points --Number of points to collect

.measure.v(smua.nvbufferl) -- Measure voltage and store in reading buffer.

smua.OUTPUT OFF
smub . OUTPUT_OFF

-- Update the front panel display and restore modified settings.

smua.
smub.

source.leveli
source.leveli

0
0

printbuffer (1,1 points, smua.nvbufferl)

end --function RunHighCurrent (sourcei, points)

--RunHighCurrent (1, 10

)

A-79

APPENDIX A
Scripts

Program 16. High Voltage with Current Measurement

-- [
KI2602Example High Voltage.tsp

This program is intended to perform the following:

1. Set up both SMUs of a Model 2602 for voltage bias and measure current on specific
intervals.

2. Deliver up to 80V @ 1A (40V @ 1A per SMU) by wiring each SMU Voltage Source in
series.

Wiring: SMUA Lo to SMUB Hi, SMUA Hi to DUT, SMUB Lo to DUT

WARNING: If either SMU reaches a compliance state, the instrument, device, or both
could be damaged.

System Requirements: 260x Firmware version: 1.0.2 or newer

Revl: JAC 3.21.2006
Rev2: JAC 10.15.2007

-Change 1 sourcev value to sourcev/2. Desired voltage value at DUT is now
programmed.

--11]
function RunHighVoltage (sourcev, points)

local 1 sourcev = sourcev/2 --Local variable for Source Voltage Value
local 1 points = points --Local variable for number of points to sample
local 1 cmpl = 1 --compliance

--Configure display
display.clear()
display.screen = display.SMUA SMUB

display.smua.measure.func = display.MEASURE DCAMPS
display.smub.measure.func = display.MEASURE DCAMPS

-- Configure source and measure settings.
smua.source.output = smua.OUTPUT OFF --Disable Output
smub.source.output = smub.OUTPUT OFF --Disable Output

smua.source.func = smua.OUTPUT DCVOLTS --Set Output function
smub.source.func = smub.OUTPUT DCVOLTS --Set Output function

smua.source.levelv = 0 --Set output level
smub.source.levelv = 0 --Set output level

smua.source.rangev = 1 sourcev --Set output level

A-80

APPENDIX A
Scripts

smub.

smua.
smub.

smua
smub

smua
smub

source

source
source

.measure.nplc
.measure.nplc

.rangev = 1 sourcev --Set output level

.limiti = 1 cmpl --Set compliance level
.limiti = 1 cmpl --Set compliance level

1 --Set measurement aperture
1 --Set measurement aperture

.measure.autozero = smua.AUTOZERO AUTO --Set Autozero mode
.measure.autozero

smub.AUTOZERO_AUTO --Set Autozero mode

-- Setup SMUA buffer to store all the result(s) in and start testing.

smua.

smua

smua

smua

smua.
smub.

smua.
smub.

smua

smua

smua.
smub.

nvbufferl.clear() --Clear Nonvolatile buffer

source
source

source
source

.measure.count

.nvbufferl.appendmode = 0 --Append buffer? 0 = No, 1 = Yes
.nvbufferl.collecttimestamps = 0 --Collect Timestamps? 0 = No, 1 = Yes

.nvbufferl.collectsourcevalues = 0 --Collect Source Values? 0 = No, 1 = Yes

.output = smua.OUTPUT ON --Enable outputs
.output = smua.OUTPUT ON --Enable outputs
.levelv = 1 sourcev -- Program source to level.
.levelv = 1 sourcev -- Program source to level.

1 points --Number of points to collect

.measure.i (smua.nvbufferl) -- Measure current and store in reading buffer.
source.output = smua.OUTPUT_OFF
source.output = smub.OUTPUT OFF

-- Update the front panel display and restore modified settings.
smua.source.levelv = 0
smub.source.levelv = 0

printbuffer (1,1 points, smua.nvbufferl)

end --function RunHighVoltage (sourcev, points)

--RunHighVoltage (40, 10)

A-81

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

KEITHLEY INSTRUMENTS, INC. M 28775 AURORA ROAD M CLEVELAND, OHIO 44139-1891 M 440-248-0400 M Fax: 440-248-6168 W

BELGIUM
Sint-Pieters-Leeuw
Ph: 02-3630040
Fax: 02-3630064
info@keithley.nl
www.keithley.nl

ITALY

Peschiera Borromeo (Mi)
Ph: 02-5538421

Fax: 02-55384228
info@keithley.it
www.keithley.it

A GREATER

CHINA

Beijing

Ph: 8610-82255010
Fax: 8610-82255018
china@keithley.com
www.keithley.com.cn

JAPAN

Tokyo

Ph: 81-3-5733-7555
Fax: 81-3-5733-7556
info.jp@keithley.com
www.keithley.jp

SWEDEN
Stenungsund

Ph: 08-50904600
Fax: 08-6552610
sweden@keithley.com
www.keithley.com

© Copyright 2009 Keithley Instruments, Inc.

KEITHLEY

FINLAND

Espoo

Ph: 09-88171661
Fax: 09-88171662
finland@keithley.com
www.keithley.com

KOREA

Seoul

Ph: 82-2-574-7778
Fax: 82-2-574-7838
keithley@keithley.co.kr
www.keithley.co.kr

SWITZERLAND
Zurich

Ph: 044-8219444
Fax: 044-8203081
info@keithley.ch
www.keithley.ch

MEASURE OF

FRANCE
Saint-Aubin

Ph: 01-64532020
Fax: 01-60117726
info@keithley.fr
www.keithley.fr

MALAYSIA

Penang

Ph: 60-4-643-9679

Fax: 60-4-643-3794
chan_patrick@keithley.com
www.keithley.com

TAIWAN

Hsinchu

Ph: 886-3-572-9077

Fax: 886-3-572-9031

info_tw@keithley.com
www.keithley.com.tw

Printed in the U.S.A.

CONFIDENCE

GERMANY
Germering

Ph: 089-84930740
Fax: 089-84930734
info@keithley.de
www.keithley.de

NETHERLANDS
Gorinchem

Ph: 0183-635333
Fax: 0183-630821
info@keithley.nl
www.keithley.nl

UNITED KINGDOM
Theale

Ph: 0118-9297500
Fax: 0118-9297519
info@keithley.co.uk
www.keithley.co.uk

No. 2911

1-888-KEITHLEY M www.keithley.com

INDIA

Bangalore

Ph: 080-26771071,-72,-73
Fax: 080-26771076
support_india@keithley.com
www.keithley.com

SINGAPORE

Singapore

Ph: 65-6747-9077

Fax: 65-6747-2991
koh_william @keithley.com
www.keithley.com.sg

1208

	2006A Disclaimer
	Table of Contents
	Illustrations
	Sec.1: General Information
	Sec.2: Two-terminal Device Tests
	Sec.3: Bipolar Transistor Tests
	Sec.4: FET Tests
	Sec.5: Using Subsrate Bias
	Sec.6: High Power Tests
	Appednix A: Scripts
	Keithley Info

