
Number 2851

Making Charge-Pumping Measurements with the
Model 4200-SCS Semiconductor Characterization
System and Series 3400 Pulse/Pattern Generator

Application Note
Series

Overview of the Charge-Pumping
Technique
Charge-pumping measurements are widely used to characterize
interface state densities in MOSFET devices. With the develop-
ment of high dielectric (high κ) gate materials, charge-pumping
has proven especially useful in characterizing charge-trapping
phenomena in high κ thin gate films. In thin gate films, leakage
current is relatively high due to quantum mechanical tunneling
of carriers through the gate. As a result, the traditional technique
for extracting interface trap density—collecting simultaneous
quasistatic and high frequency C-V measurement data and com-
paring the difference—can’t be used because quasistatic C-V is
very hard to achieve at the leakage current level. However,
charge-pumping measurements can still be used to extract inter-
face trap density, and the effect of gate leakage can be compen-
sated for by measuring charge-pumping current at lower frequen-
cy and subtracting it from measurement results at higher fre-
quencies [1, 2].

The basic charge-pumping technique involves measuring the
substrate current while applying voltage pulses of fixed ampli-
tude, rise time, fall time, and frequency to the gate of the transis-
tor, with the source, drain, and body tied to ground. The pulse
can be applied with a fixed amplitude, voltage base sweep or a
fixed base, variable amplitude sweep.

In a voltage base sweep, the amplitude and period (width)
of the pulse are fixed while sweeping the pulse base voltage
(Figure 1a). At each base voltage, body current can be measured
and plotted against base voltage. The interface trap density (Dit)
can be extracted as a function of bandbending, based on this
equation:

IcpDit = _______
qAf∆E

where Icp is the measured charge-pumping current, q is the fun-
damental electronic charge, A is the area, f is the frequency, and
∆E is the difference between the inversion Fermi level and the
accumulation Fermi level [3].

A fixed base, variable amplitude sweep has a fixed base
voltage and pulse frequency with step changes in voltage ampli-
tude (Figure 1b). The information obtained is similar to that
extracted from a voltage base sweep. These measurements can
also be performed at different frequencies to obtain a frequency
response for the interface traps.

Figure 1. Overview of charge-pumping measurements:

(a) Pulse waveform for base voltage sweep; pulse amplitude is
constant.

(b) Pulse waveform for amplitude sweep; base voltage is constant.

Hardware setup
It’s relatively easy to perform charge-pumping measurements
and data analysis using a Model 4200-SCS (Semiconductor
Characterization System) in combination with the Keithley
Series 3400 Pulse/Pattern Generator. The KTE Interactive soft-
ware that runs the Model 4200-SCS can simultaneously control
the system’s internal Source-Measure Units (SMUs) and external
instruments via GPIB with simple C programming. Refer to the
Model 4200-SCS Reference Manual and Keithley Application
Notes for guidance on using the Model 4200-SCS and KTE
Interactive software. Figure 2a illustrates the connections for a
device under test (DUT) with one of the Model 4200-SCS’s
SMUs and the Model 3402 pulse generator without a switch
matrix; in Figure 2b, a semiconductor switch matrix is included
in the configuration. This application note describes how to per-
form charge-pumping measurements with the Model 4200-SCS
and a Keithley Series 3400 Pulse/Pattern Generator.

Setting Up KCON
(Keithley CONfiguration utility)
The first thing to do is to enter the proper pulse generator model
number (and switch matrix, if necessary) into KCON, the soft-
ware interface that controls the Model 4200-SCS’s internal hard-
ware (SMUs and preamps) and external instruments with GPIB
communication. To access KCON, just double-click on KCON
on the Model 4200-SCS desktop. Then, from the Tools menu,
select Add external Instruments > Pulse Generator >
Keithley 3401 or 3402 Pulse/Pattern Generator. Figure 3
shows a KCON window with this pulse generator added. If the
pulse generator model to be used is not included on the support-
ed list, it must be added as a “General Purpose Instrument”
(GPI) rather than a “Pulse Generator” (PGU) in KCON. After the

Vt

Vfb

(a) (b)

pulse generator is added, KCON assigns an instrument ID string
to the pulse generator. This ID string could be PGUx or GPIx,
depending on how the pulse generator is added (Pulse Generator
Unit or General Purpose Instrument), and x could be any number
from 1 to 4. This ID will be used as an input parameter for the
charge-pumping measurement. It tells KITE software which
instrument is on the GPIB and its address.

Setting Up a Project in KITE
KITE is the main software interface that controls internal hard-
ware and external instruments with GPIB interfaces. Charge-
pumping measurement will be performed in KITE interface with

a UTM (User Test Module). Refer to the Model
4200-SCS Reference Manual for more details on
KITE operation and UTMs.

Double-click on the KITE icon on the Model
4200-SCS desktop to bring up the KITE interface.
From the menu bar, select File > New project and
type in the project name. Then, go once more to the
menu bar and select Project > Make new subsite
plan and type in a valid subsite name. Next, go to
the menu bar and select Project > Make new
device plan and choose a device from the MOSFET
folder. Finally, go to the menu bar and select
Project > Make new User Test Module and type in
the module name, (for example, BaseSweep) and
click OK. Double-click the BaseSweep module in
the project tree and a setup window will appear. In
the setup window, choose user library
ChargePumping from the drop-down library list,
and choose module BaseSweep from the User

Module list. After the module is selected, a parameter window
will appear, as in Figure 4. The first parameter on the list is
PGUId, which refers to the ID in KCON. Use the appropriate
GPIB address to communicate to the Pulse Generator. Fill in the
parameter list with the proper setup parameters, such as switch
connection (if no switch is presented, then fill in 0 in the
GatePin, BulkPin, SourcePin and DrainPin field), frequency,
pulse amplitude, and duty cycle. After all the input parameters
have been properly defined, click the Save button (the small
floppy disk icon) and the test is ready to run. Click the Run but-
ton (Green triangle icon) to execute the test. The data can be
plotted in graph form once the measurement is complete. Figure
5 illustrates two examples of these graphs.

4200-TRX-2

4200-TRX-2

4200-MTRX-2

4200-MTRX-2

4200-TRX-2

7051-5

7078-TRX-BNC

SMU1

SMU2

SMU3

SMU4

GNDU

PGU

4200
4200-PA

7174A
Card 1

A

B

C

D

E

F

G

H

(b)

4
1 2

3

PGU SMU1

(a)

2

Pins 1–12
4200-TRX-3

4
1

2

3

Figure 2. DUT connection with 4200-SCS and pulse generator

(a) DUT connection without a switch matrix

(b) DUT connection with switch matrix

Figure 3. KCON setup window Figure 4. KITE project window

(a)

(b)

Figure 5. Example plot. (a) Base voltage sweep (b) Amplitude sweep

Calculating DIT
The Model 4200-SCS’s Formulator function supports calculating
DIT. To activate the Formulator window, click the Formulator
button on the definition tab of a test setup window. Enter the for-
mula for DIT, as shown in Figure 6. The resulting DIT value can
be plotted with the system's graphing tools.

Figure 6. Entering formulas in the Formulator.

Conclusion
The KTE Interactive software on the Model 4200-SCS makes it
very easy to make charge-pumping measurements with a pulse
generator. With the current driver, one does not need any pro-
gramming work to do charge-pumping with a Keithley Series
3400 Pulse/Pattern Generator (also works with Agilent
81110A/8111A). Simple data analysis can be done in the built-in
Formulator and plotted with the powerful graphing tools. This
makes the 4200-SCS an ideal tool for characterizing interface
properties of gate dielectrics, especially in the area of high
dielectric material development.

References
[1] P. Masson, et al., “On the Tunneling Component of Charge

Pumping Current in Ultrathin Gate Oxide MOSFETs,” IEEE
Elect. Dev. Lett., Vol. 20, No. 2, pp. 92-94, 1999.

[2] Chung, Steve S., et al., “A Novel and Direct Determination of
the Interface Traps in Sub-100nm CMOS Devices with Direct
Tunneling Regime (12~16Å) Gate Oxide,” 2002 VLSI Tech.
Digest of Tech. Papers.

[3] G. Groeseneken, H.E. Maes, N. Beltran, and R.F. De
Keersmaecker, “A Reliable Approach to Charge-Pumping
Measurements in MOS Transistors,” IEEE Trans. Electron.
Dev., Vol. ED-31, pp. 42-53, 1984.

Appendix 1:
Example source code for base sweep using 3401
#include “keithley.h”

int BaseSweep(char *PGUId, int GatePin, int BulkPin, int
DrainPin, int SrcPin, double Frequency, double Ampl_V, double
BaseVStart, double BaseVStop, double BaseVStep, double
RiseTime, double FallTime, double DutyCycle, double LoadImp,
double *BaseV, int BaseVSize, double *Icp, int IcpSize, double
*Qcp, int QcpSize)
{

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc.
All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc. 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168
1-888-KEITHLEY (534-8453) • www.keithley.com

© Copyright 2007 Keithley Instruments, Inc. No. 2851
Printed in the U.S.A.

/* USRLIB MODULE CODE */
int index;
int NumPoints;
int PGU1;
char CommandString[50];
int fcnstat;
char TempBuf[20] = “”;
int GPIBAddress;
char GPIBAddressStr[10];
double idummy;
int temp = 1;
int PLC;

getinstid(PGUId, &PGU1); //
get PGU id from KCON

if (PGU1 < 0)
return(INVAL_INST_ID); // No such

PGU

getinstattr(PGU1, “GPIBADDR”, GPIBAddressStr);
GPIBAddress = atoi(GPIBAddressStr);

if (PguInit(GPIBAddress)< 0) return -1; //
Initialize PGU
// set up PGU
if (PguSetup(GPIBAddress, RiseTime, FallTime,DutyCycle,
Frequency, LoadImp)<0) return -1;

//Validate Input parameters
if (GatePin > 72) return(INVAL_PARAM); //
Validate pins
if (BulkPin > 72) return(INVAL_PARAM); //
Validate pins
if (SrcPin > 72) return(INVAL_PARAM); //
Validate pins
if (DrainPin > 72) return(INVAL_PARAM); //
Validate pins
if (Frequency == 0) return(INVAL_PARAM);
// Validate pins
if (BaseVStep == 0) return(INVAL_PARAM);
// Validate pins

//Initialize return arrays
for (index = 0; index < IcpSize; index ++)
{

BaseV[index] = DBL_NAN;
Icp[index] = DBL_NAN;
Qcp[index] = DBL_NAN;

}

// setup switch matrix if necessary
if(GatePin > 0)

conpin(PGU1,GatePin, 0);
if(BulkPin > 0)

conpin(SMU1,BulkPin, 0);
if(SrcPin > 0)

conpin(SMU2,SrcPin, 0);
if(DrainPin > 0)

conpin(SMU2,DrainPin, 0);

//Setup SMU
forcev(SMU2, 0);
forcev(SMU1,0);
lorangei(SMU1,1e-10);
if (Frequency >= 1e6)

PLC = 1;
else if (Frequency >= 1e5)

PLC = 2;
else if (Frequency >= 1e4)

PLC = 5;
else

PLC= 10;

//Initialize current range
setmode(SMU1,KI_INTGPLC,PLC);
limiti(SMU1,1e-2);
measi(SMU1, &idummy);

NumPoints =(int) fabs((BaseVStart - BaseVStop) / BaseVStep) +
1;

// Turn on output on Pulse Generator

sprintf(CommandString, “:OUTPUT1 ON\n”);

fcnstat = kibsnd(GPIBAddress, -1, GPIBTIMO,

strlen(CommandString), CommandString);

if (fcnstat > 0) return(GPIB_ERROR_OCCURED);

//Main sweep loop

for (index = 0; index < NumPoints; index++)

{

BaseV[index] = BaseVStart + index * BaseVStep;

// Program the pulse height. This one is tricky...so get

it right!

if (Ampl_V > 0)

{

sprintf(CommandString, “:VOLT1:LOW

%9.3e\n”,BaseV[index]);

fcnstat = kibsnd(GPIBAddress, -1, GPIBTIMO,

strlen(CommandString), CommandString);

sprintf(CommandString, “:VOLT1:HIGH %9.3eV\n”,

Ampl_V+BaseV[index]);

fcnstat = kibsnd(GPIBAddress, -1, GPIBTIMO,

strlen(CommandString), CommandString);

}

else {

sprintf(CommandString, “:VOLT1:LOW %9.3eV\n”,

Ampl_V+BaseV[index]);

fcnstat = kibsnd(GPIBAddress, -1, GPIBTIMO,

strlen(CommandString), CommandString);

sprintf(CommandString, “:VOLT1:HIGH

%9.3eV\n”,BaseV[index]);

fcnstat = kibsnd(GPIBAddress, -1, GPIBTIMO,

strlen(CommandString), CommandString);

sprintf(CommandString, “:OUTP1:POL INV\n”);

fcnstat = kibsnd(GPIBAddress, -1, GPIBTIMO,

strlen(CommandString), CommandString);

}

if (fcnstat > 0) return(GPIB_ERROR_OCCURED);

// Measure substrate current

if (index == 0) delay(200);

measi(SMU1, &idummy);

delay(10);

intgi(SMU1, &Icp[index]);

Qcp[index] = Icp[index]/Frequency;

}

//turn off output

sprintf(CommandString, “:OUTPUT1 OFF\n”);

fcnstat = kibsnd(GPIBAddress, -1, GPIBTIMO,

strlen(CommandString), CommandString);

if (fcnstat > 0) return(GPIB_ERROR_OCCURED);

return OK;

/* USRLIB MODULE END */

} /*

End BaseSweep.c */

svein.hermansen
New Stamp

