
Debugging Serial Buses in
Embedded System Designs
––
APPLICATION NOTE

Application Note

www.tektronix.com/oscilloscopes2

Embedded systems can contain many different types of
devices including microprocessors, microcontrollers, DSPs,
RAM, EPROMs, FPGAs, A/Ds, D/As, and I/O. These various
devices have traditionally communicated with each other and
the outside world using wide parallel buses. Today, however,
more and more of the building blocks used in embedded
system design are replacing these wide parallel buses with
serial buses for the following reasons:

 Less board space required due to fewer signals to route

 Lower cost

 Lower power requirements

 Fewer pins on packages

 Embedded clocks

 Differential signaling for better noise immunity

 Wide availability of components using standard
serial interfaces

While serial buses provide a number of advantages, they
also pose some significant challenges to an embedded
system designer due simply to the fact that information
is being transmitted in a serial fashion rather than parallel.
This application note discusses common challenges
for embedded system designers and how to overcome
them using capabilities found in the following series of
oscilloscopes: MSO/DPO70000, DPO7000, MSO/DPO5000,
MDO4000, MDO3000 and MSO/DPO2000 Series.

What you will learn:
How to solve embedded system design issues
with exceptional efficiency using Tektronix
oscilloscopes with powerful trigger, decode,
and search capabilities.

Introduction
Embedded systems are literally everywhere in our society
today. A simple definition of an embedded system is a special-
purpose computer system that is part of a larger system or
machine with the intended purpose of providing monitoring
and control services to that system or machine. The typical
embedded system starts running some special purpose
application as soon as it is turned on and will not stop until
it is turned off. Virtually every electronic device designed
and produced today is an embedded system. A short list of
embedded system examples include:

 Automatic teller machines

 Cellular phones

 Computer printers

 Antilock brake controllers

 Microwave ovens

 Inertial guidance systems for missiles

 DVD players

 Programmable logic controllers (PLC) for industrial
automation and monitoring

 Portable music players

 Maybe even your toaster…

Figure 1. Logic Analyzer acquisition of a microcontroller’s clock, address bus, data bus
and control lines.

What you will learn:
How to solve embedded system design
issues with exceptional efficiency using
Tektronix oscilloscopes with powerful
trigger, decode, and search capabilities.

www.tektronix.com/oscilloscopes 3

Debugging Serial Buses in Embedded System Designs

Parallel vs. Serial
With a parallel architecture, each component of the bus has
its own signal path. There may be 16 address lines,16 data
lines, a clock line and various other control signals. Address
or data values sent over the bus are transferred at the same
time over all the parallel lines. This makes it relatively easy to
trigger on the event of interest using either the State or Pattern
triggering found in most oscilloscopes and logic analyzers.
It also makes it easy to understand at a glance the data you
capture on either the oscilloscope or logic analyzer display. For
example, in Figure 1 we’ve used a logic analyzer to acquire the
clock, address, data and control lines from a microcontroller.
By using a state trigger, we’ve isolated the bus transfer we’re
looking for. To “decode” what’s happening on the bus, all we
have to do is look at the logical state of each of the address,
data, and control lines. With a serial bus all this information is
sent serially on a few conductors (sometimes one). This means
that a single signal may include address, control, data, and
clock information. As an example, look at the Controller Area
Network (CAN) serial signal shown in Figure 2.

This message contains a start of frame, an identifier (address),
a data length code, data, CRC, and end of frame as well as a
few other control bits. To further complicate matters, the clock
is embedded in the data and bit stuffing is used to ensure an
adequate number of edges for the receiving device to lock to
the clock. Even to the very trained eye, it would be extremely
difficult to quickly interpret the content of this message. Now
imagine this is a faulty message that only occurs once a day
and you need to trigger on it. Traditional oscilloscopes and
logic analyzers are simply not well equipped to deal with this
type of signal.

Even with a simpler serial standard such as I2C, it is still
significantly harder to observe what is being transmitted over
the bus than it is with a parallel protocol.

I2C uses separate clock and data lines, so at least in this case
you can use the clock as a reference point. However, you still
need to find the start of the message (data going low while the
clock is high), manually inspect and write down the data value
on every rising edge of the clock, and then organize the bits
into the message structure.

It can easily take a couple of minutes of work just to decode
a single message in a long acquisition and you have no idea
if that’s the message you are actually looking for. If it’s not,
then you need to start this tedious and error prone process
over on the next one. It would be nice to just trigger on the
message content you are looking for, however the state and
pattern triggers you’ve used for years on scopes and logic
analyzers won’t do you any good here. They are designed to
look at a pattern occurring at the same time across multiple
channels. To work on a serial bus, their trigger engines would
need to be tens to hundreds of states deep (one state per bit).
Even if this trigger capability existed, it would not be a fun task
programming it state-by-state for all these bits. There has to
be a better way!

There is a better way. The following sections highlight how
Tektronix oscilloscopes1 can be used with some of the most
common low-speed serial standards used in embedded
system design.

Figure 2. One message acquired from a CAN bus. Figure 3. One message acquired from an I2C bus.

1 Support for serial bus standards vary depending on the oscilloscope model. For a table of buses supported by different Tektronix oscilloscopes, please see Appendix A or
visit www.tektronix.com.

Application Note

www.tektronix.com/oscilloscopes4

I2C

Background

I2C, or “I squared C”, stands for Inter-Integrated Circuit. It was
originally developed by Philips in the early 1980s to provide
a low-cost way of connecting controllers to peripheral chips
in TV sets, but has since evolved into a worldwide standard
for communication between devices in embedded systems.
The simple two-wire design has found its way into a wide
variety of chips like I/O, A/Ds, D/As, temperature sensors,
microcontrollers and microprocessors from numerous leading
chipmakers including: Analog Devices, Atmel, Infineon,
Cyprus, Intel, Maxim, Philips, Silicon Laboratories, ST
Microelectronics, Texas Instruments, Xicor, and others.

How It Works

I2C’s physical two-wire interface is comprised of bi-directional
serial clock (SCL) and data (SDA) lines. I2C supports multiple
masters and slaves on the bus, but only one master may
be active at a time. Any I2C device can be attached to the
bus allowing any master device to exchange information
with a slave device. Each device is recognized by a unique
address. A device can operate as either a transmitter or a
receiver, depending on its function. Initially, I2C only used 7-bit
addresses, but evolved to allow 10-bit addressing as well.
Three bit rates are supported: 100 kb/s (standard mode),

400 kb/s (fast mode), and 3.4 Mb/s (high-speed mode). The
maximum number of devices is determined by a maximum
capacitance of 400 pF or roughly 20-30 devices.

The I2C standard specifies the following format in Figure 4:

 Start - indicates the device is taking control of the bus and
that a message will follow.

 Address - a 7 or 10 bit number representing the address of
the device that will either be read from or written to.

 R/W Bit - one bit indicating if the data will be read from or
written to the device.

 Ack - one bit from the slave device acknowledging the
master’s actions. Usually each address and data byte has
an acknowledge, but not always.

 Data - an integer number of bytes read from or written to
the device.

 Stop - indicates the message is complete and the master
has released the bus.

There are two ways to group I2C addresses for decoding: in
7-bits plus a read or write (R/W) bit scheme, and in 8-bits (a
byte) where the R/W bit is included as part of the address.
The 7-bit address scheme is the specified I2C Standard
followed by firmware and software design engineers. But
many other engineers use the 8-bit address scheme. Tektronix
oscilloscopes can decode data in either scheme.

Figure 4. I2C message structure.

Start

7 or 10 bits 1 bit

R/W

1 bit

Ack

8 bits

Data0

1 bit

Ack0

8 bits

Data1

1 bit

Ack1

1 bit

...

8 bits

DataN

1 bit

AckN StopAddress

www.tektronix.com/oscilloscopes 5

Debugging Serial Buses in Embedded System Designs

the I2C bus, so we decide to set up a trigger event to look
for a write to address 18 (the fan speed controller polling the
sensor for the current temperature). The triggered acquisition
is shown in the screenshot Figure 7.

Working with I2C

With the optional serial triggering and analysis capability,
Tektronix oscilloscopes become a powerful tool for embedded
system designers working with I2C buses. The front panel has
Bus buttons that allow the user to define inputs to the scope
as a bus. The I2C bus setup menu is shown in Figure 5.

By simply defining which channels clock and data are on,
along with the thresholds used to determine logic ones
and zeroes, you’ve enabled the oscilloscope to understand
the protocol being transmitted across the bus. With this
knowledge, the oscilloscope can trigger on any specified
message-level information and then decode the resulting
acquisition into meaningful, easily interpreted results. Gone are
the days of edge triggering, hoping you acquired the event of
interest, and then manually decoding message after message
while looking for the problem.

As an example, consider the embedded system in Figure 6.
An I2C bus is connected to multiple devices including a
CPU, an EEPROM, a fan speed controller, a digital to analog
converter (DAC), and a couple of temperature sensors.

This instrument was returned to engineering for failure analysis
as the product was consistently getting too hot and shutting
itself off. The first thing to check is the fan controller and the
fans themselves, but they both appear to be working correctly.
The next thing to check for is a faulty temperature sensor.
The fan speed controller polls the two temperature sensors
(located in different areas of the instrument) periodically and
adjusts the fan speed to regulate internal temperature. We
are suspicious that one or both of these temperature sensors
is not reading correctly. To see the interaction between the
sensors and the fan speed controller, we simply need to
connect to the I2C clock and data lines and set up a bus.
We know that the two sensors are addresses 18 and 19 on

Figure 5. I2C bus set-up menu.

Figure 6. I2C bus example.

Figure 7. I2C address and data bus waveform decoding.

CPU

SCLK (clock)

SDA (data)

EEPROM

DACFan Speed Controller

Temperature Sensor 1

Temperature Sensor 2

Application Note

www.tektronix.com/oscilloscopes6

attempting to write to the temperature sensor. It then checked
the temperature sensor at Address 19 and received back
the desired information. So, why isn’t the first temperature
sensor responding to the fan controller? Taking a look at the
part on the board we find that one of the address lines isn’t
soldered correctly. The temperature sensor was not able to
communicate on the bus and the unit was overheating as
a result. We’ve managed to isolate this potentially elusive
problem in a matter of a couple minutes due to the I2C trigger
and bus decoding capability of the oscilloscope.

In the example in Figure 7 we triggered on a write, but the
oscilloscope's powerful I2C triggering includes many other
capabilities:

 Start - triggers when SDA goes low while SCL is high.

 Repeated Start - triggers when a start condition occurs
without a previous stop condition. This is usually when a
master sends multiple messages without releasing the bus.

 Stop - triggers when SDA goes high while SCL is high.

 Missing Ack - slaves are often configured to transmit an
acknowledge after each byte of address and data. The
oscilloscope can trigger on cases where the slave does not
generate the acknowledge bit.

 Address - triggers on a user specified address or any of the
pre-programmed special addresses including General Call,
Start Byte, HS-mode, EEPROM, or CBUS. Addressing can
be either 7 or 10 bits and is entered in binary or hex.

 Data - triggers on up to 12 bytes of user specified data
values entered in either binary or hex.

 Address and Data - this allows you to enter both address
and data values as well as read vs. write to capture the
exact event of interest.

These triggers allow you to isolate the particular bus traffic
you’re interested in, while the decoding capability enables you
to instantly see the content of every message transmitted over
the bus in your acquisition.

In this case, channel 1 (yellow) is connected to SCLK and
channel 2 (cyan) to SDA. The purple waveform is the I2C bus
we’ve defined by inputting just a few simple parameters to
the oscilloscope. The upper portion of the display shows the
entire acquisition. In this case we’ve captured a lot of bus idle
time with a burst of activity in the middle which we’ve zoomed
in on. The lower, larger portion of the display is the zoom
window. As you can see, the oscilloscope has decoded the
content of each message going across the bus. Buses use
the colors and marks in Table 1 to indicate important parts of
the message. Taking a look at the acquired waveforms, we
can see that the oscilloscope did indeed trigger on a Write to
address 18 (shown in the lower left of the display). In fact, the
fan speed controller attempted to write to address 18 twice,
but in both cases it did not receive an acknowledge after

Table 1. Bus conditions.

Bus Condition Indicated by:

Starts are indicated by vertical green bars. Repeated

starts occur when another start is shown without a

previous Stop.

Addresses are shown in yellow boxes along with a
[W] for write or [R] for read. Address values can be
displayed in either hex or binary.

Data is shown in cyan boxes. Data values can be

displayed in either hex or binary.

Missing Acks are indicated by an exclamation point

inside a red box.

Stops are indicated by red vertical bars.

www.tektronix.com/oscilloscopes 7

Debugging Serial Buses in Embedded System Designs

In Figure 8, each slave only talks to the master. However,
SPI can be wired with the slave devices daisy-chained, each
performing an operation in turn, and then sending the results
back to the master as shown in Figure 9.

So, as you can see, there is no “standard” for SPI
implementation. In some cases, where communication from
the slave back to the master is not required, the MISO signal
may be left out all together. In other cases there is only one
master and one slave device and the SS signal is tied to
ground. This is commonly referred to as 2-wire SPI.

When an SPI data transfer occurs, an 8-bit data word is
shifted out on MOSI while a different 8-bit data word is being
shifted in on MISO. This can be viewed as a 16-bit circular
shift register. When a transfer occurs, this 16-bit shift register
is shifted 8 positions, thus exchanging the 8-bit data between
the master and slave devices. A pair of registers, clock polarity
(CPOL) and clock phase (CPHA) determine the edges of
the clock on which the data is driven. Each register has two
possible states which allows for four possible combinations, all
of which are incompatible with one another. So a master/slave
pair must use the same parameter values to communicate.
If multiple slaves are used that are fixed in different
configurations, the master will have to reconfigure itself each
time it needs to communicate with a different slave.

SPI

Background

The Serial Peripheral Interface bus (SPI) was originally
developed by Motorola in the late 1980s for their 68000 series
micro-controllers. Due to the simplicity and popularity of the
bus, many other manufacturers have adopted the standard
over the years. It is now found in a broad array of components
commonly used in embedded system design. SPI is primarily
used between micro-controllers and their immediate peripheral
devices. It’s commonly found in cell phones, PDAs, and other
mobile devices to communicate data between the CPU,
keyboard, display, and memory chips.

How It Works

The SPI bus is a master/slave, 4-wire serial communications
bus. The four signals are clock (SCLK), master output/
slave input (MOSI), master input/slave output (MISO), and
slave select (SS). Whenever two devices communicate, one
is referred to as the "master" and the other as the “slave”.
The master drives the serial clock. Data is simultaneously
transmitted and received, making it a full-duplex protocol.
Rather than having unique addresses for each device on the
bus, SPI uses the SS line to specify which device data is being
transferred to or from. As such, each unique device on the bus
needs its own SS signal from the master. If there are 3 slave
devices, there are 3 SS leads from the master, one to each
slave as shown in Figure 8.

Figure 9. Daisy-chained SPI configuration.Figure 8. Common SPI configuration.

SPI Master

Slave #1SCLK

MISOMOSI

MISO

SS1

SS1

SS2

SS3

Slave #2

SCLK

MISO

MOSI

Slave #3

SCLK

SCLK

MOSI

SS2

SS3 MISO

MOSI

SPI Master

Slave #1

SCLK SCLK

MOSI

MISO

SS

MOSI

MISO

SS1

SS2

SS3

Slave #2

SCLK

MOSI

MISO

SS

Slave #3

SCLK

MOSI

MISO

SS

Application Note

www.tektronix.com/oscilloscopes8

Working with SPI

Using the front panel Bus buttons we can define an SPI
bus by simply entering the basic parameters of the bus
including which channels SCLK, SS, MOSI, and MISO are on,
thresholds, and polarities (see Figure 10).

As an example, consider the embedded system in Figure 11.

An SPI bus is connected to a synthesizer, a DAC, and some
I/O. The synthesizer is connected to a VCO that provides a
2.5 GHz clock to the rest of the system. The synthesizer is
supposed to be programmed by the CPU at startup. However,
something isn’t working correctly as the VCO is stuck at its rail
generating 3 GHz. The first step in debugging this problem is
to inspect the signals between the CPU and the synthesizer
to be sure the signals are present and there are no physical
connection problems, but we don’t find anything wrong. Next
we decide to take a look at the information being transmitted
across the SPI bus to program the synthesizer. To capture
the information we set the oscilloscope to trigger on the
synthesizer’s Slave Select signal going active and power up
the DUT to capture the start up programming commands. The
acquisition is shown in Figure 12.

Channel 1 (yellow) is SCLK, channel 2 (cyan) is MOSI and
channel 3 (magenta) is SS. To help determine if we’re
programming the device correctly we take a look at the data
sheet for the synthesizer. The first three messages on the
bus are supposed to initialize the synthesizer, load the divider
ratio, and latch the data. According to the spec, the last nibble
(single hex character) in the first three transfers should be 3, 0,
and 1, respectively, but we’re seeing 0, 0, and 0.

Figure 12. Acquiring synthesizer configuration messages off the SPI bus.

Figure 11. Synthesizer controlled via SPI.

Figure 10. SPI bus setup menu.

Synthesizer

VCO

SCLK

MOSI

MOSI

MOSI

SS1

DACSCLK

I/O
SCLK

SS2

SS3

8 bit CPU
(Master)

SS1

SS2

SS3

SCLK

MOSI

www.tektronix.com/oscilloscopes 9

Debugging Serial Buses in Embedded System Designs

In the example above we used a simple SS Active trigger. The
full SPI triggering capability in Tektronix oscilloscopes include
the following types:

 SS Active - triggers when the slave select line goes true for
a slave device.

 Start of Frame - triggers at the start of a frame when the
clock idle time is used to define the frame timing.

 MOSI - trigger on up to 16 bytes of user specified data from
the master to a slave.

 MISO - trigger on up to 16 bytes of user specified data from
a slave to the master.

 MOSI/MISO - trigger on up to 16 bytes of user specified
data for both master to slave and slave to master (available
only on 4000/3000/2000 Series models.

Again, these triggers allow you to isolate the particular bus
traffic you’re interested in, while the decoding capability
enables you to instantly see the content of every message
transmitted over the bus in your acquisition.

Upon seeing all 0s at the end of the messages we realize
we’ve made one of the most common mistakes with SPI by
programming the bits in each 24-bit word in reverse order in
the software. A quick change in the software results in the
following acquisition and a VCO correctly locked at 2.5 GHz
as shown in Figure 13.

Figure 13. Correct synthesizer configuration messages.

Application Note

www.tektronix.com/oscilloscopes10

The USB Implementers Forum (USB-IF) manages and
promotes USB standards and USB technology. USB
specifications are available at the USB-IF web site at
www.usb.org.

How It Works

The USB configuration is one host controller with 1 to 127
devices. USB is a tiered-star topology with optional hubs
to expand the bus (Figure 14). The host is the only master
and it controls all bus traffic. The host initiates all device
communications and devices do not have the capability to
interrupt the host.

There are four USB speeds as shown in Table 2. A high-speed
device starts out at full-speed and then transitions to high-
speed. The speed of a USB 2.0 bus is limited by the slowest
device connected to the host controller.

With SuperSpeed USB, two host controllers are used: one for
SuperSpeed USB devices and one for USB 2.0 devices. Like
a USB 2.0 system, the speed of the bus with USB 2.0 devices
is limited by the slowest device.

USB

Background

The Universal Serial Bus (USB) has become a dominant
interface on today’s personal computers, replacing many of
the external serial and parallel buses previously used. Since
its introduction in 1995, USB has grown beyond its original
personal computer usage and has become a ubiquitous
interface used in many types of electronic devices.

The USB 2.0 specification released in 2000 covers most of
the USB devices that are being used today. USB 2.0 replaced
the USB 1.1 specification, adding a high-speed interface (see
Table 2) to the low-speed and full-speed interfaces in the USB
1.1 specification.

USB has expanded beyond just system-to-system
communication. For example, the Inter-Chip USB (IC_USB)
and the High-Speed Inter-Chip (HSIC) USB are used for
chip-to-chip communications. Supplements to the USB 2.0
specification cover IC_USB, HSIC and other enhancements.

In 2008, the USB 3.0 specification was released. USB
3.0 is called SuperSpeed USB and is ten times faster
than high-speed USB 2.0. SuperSpeed USB preserves
backward compatibility with USB 2.0 devices. USB 3.0 is an
additional specification that is used in conjunction with the
USB 2.0 specification and does not replace it. SuperSpeed
USB devices must implement USB 2.0 device framework
commands and descriptors.

Table 2. USB speeds.

Figure 14. Correct synthesizer configuration messages.

Host Controller

Hub Device Device

DeviceDeviceDeviceDevice

Device Device Device Device

Hub

Hub

USB Speed Bit Rate Bit Period

Low-Speed USB 2.0 1.5 Mbps 667 ns

Full-Speed USB 2.0 12 Mbps 83.3 ns

High-Speed USB 2.0 480 Mbps 2.08 ns

SuperSpeed USB 3.0 5 Gbps 200 ps

www.tektronix.com/oscilloscopes 11

Debugging Serial Buses in Embedded System Designs

Electrical Configuration

The host uses an upstream “A” connector and devices use
a downstream “B” connector, as shown in Figure 16. Each
connector has three versions: standard, mini and micro.

The USB 2.0 cable has four wires as shown in Figure 16. Two
wires are used to provide power from the host: 5 V power (red
wire) and ground (black wire). The connectors are designed
so that the power and ground pins are connected before the
data pins. The host provides current from 100 mA to 500 mA
with intelligent power management. For example, power to a
device can be monitored by the host or hub and switched off
if an over-current condition occurs.

Device Endpoints

Device endpoints are data sources and sinks in the device.
Each device can have up to 16 data endpoints (Figure
15). Endpoint 0 is mandatory and is used by the host to
communicate to the device. A pipe is the logical connection
between the application software in the host and device
endpoint.

Enumeration

Enumeration is the configuration process that occurs at
power-on or when a device is hot plugged. The host detects
the presence of the device on the USB bus. Next, the host
polls the device with the SETUP token using address 0 and
endpoint 0. Then, the host assigns a unique address to the
device in the range of 1 to 127. Also, the host identifies the
device speed and data transfer type. During enumeration
a device’s class is determined. The device class defines a
device’s functionality such as printer, mass storage, video,
audio, human interface, etc.

Figure 16. A USB four-wire cable uses the “A” connector at the upstream port and
the “B” connector at the downstream port.

Figure 15. USB endpoints are the device’s data sources and sinks that have logical
pipes to the application software.

Host Controller

A Connector

Device

B Connector

Upstream
Port

USB
Cable

Downstream
Port

5V

D -

GND

D +

Source
Pipe

Device
Address 0 to 127

Sink
Pipe

Endpoint 0
Data Sink

Endpoint 15
Data Sink

Endpoint 0
Data Source

Endpoint 15
Data Source

Host Controller

Application Note

www.tektronix.com/oscilloscopes12

In the J idle state, a low-speed device pulls D- high resulting
in a negative differential voltage. A full-speed device pulls D+
high resulting in a positive differential voltage. The K state is
opposite of the J state.

Data transmission uses non return to zero inverted (NRZI)
encoding with bit stuffing to ensure a minimum number of
transitions. The least significant bit is transmitted first and the
most significant bit is transmitted last.

Packets

The packets are the fundamental elements of USB
communications. Packets start with a synchronization field
followed by the packet identifier. After the packet identifier is
no field or other fields depending upon the type of packet. The
end-of-packet field terminates the packet.

Starting from the J idle state, a packet starts with an 8-bit
synchronization (SYNC) field for low-speed and full-speed
USB. SYNC is 3 KJ pairs followed by two Ks (Figure 17).

The SYNC field for high-speed USB is 15 KJ pairs followed by
two Ks and hubs are allowed to reduce the repeating SYNC
field to 5 KJ pairs followed by two Ks.

Packet identifier (PID) is the second packet byte composed of
a 4-bit PID and its 4-bit PID complement for error checking. A
PID encoding error is when the first PID 4-bits do not match
the complement of the last PID 4-bits. Bits are sent out onto
the bus least-significant bit first and most-significant bit last.

The PID 4-bit value identifies 17 types of packets as shown
in Table 4. Notice packet PRE and ERR have the same PID
code. Packet type groups are token, data, handshake and
special.

The end-of-packet (EOP) is three bits long. EOP starts with
two bits of SE0 and ends with one bit of J state.

A twisted differential pair Data+ (D+ green wire) and Data-
(D- white wire) wires are used for bidirectional communications
using half-duplex differential signaling controlled by the host.
Signal levels are listed in Table 3. The bus is DC coupled.

The host pulls down both D+ and D- when no device is
connected. This is called single-ended zero (SE0) state. The
USB bus voltage is pulled positive or negative when a device
is connected to the USB bus and the polarity indicates the
speed of the device.

Figure 17. Low-speed and full-speed SYNC field.

K J K J K J K K

Table 3. Electrical signal characteristics.

Table 4. USB packet types.

USB Speed Low State High State

Low-Speed <0.3V >2.8V

Full-Speed <0.3V >2.8V

High-Speed 0 V±10% 400 mV±10%

USB Speed Bit Rate Bit Period

Token OUT
IN
SOF
SETUP

0001
1001
0101
1101

Data DATA0
DATA1
DATA2
MDATA

0011
1011
0111
1111

Handshake ACK
NAK
STALL
NYET

0010
1010
1110
0110

Special PRE
ERR
SPLIT
PING
Reserved

1100
1100
1000
0100
0000

www.tektronix.com/oscilloscopes 13

Debugging Serial Buses in Embedded System Designs

Data Packets

Data packets contain a PID byte, data bytes and 16-bit CRC
as shown in Figure 20.

DATA0 and DATA1 packets have a 1-bit sequence number
that is used in stop and wait automatic repeat-request
handshake. DATA0 and DATA1 packets alternate in error
free transmission. Data packets are resent with the same
sequence number when a transmission error occurs.

An error free data transaction is when the host sends a DATA0
packet to the device, the device sends a handshake ACK
packet and then the host sends a DATA1 packet.

If the host does not receive a handshake ACK packet or
received a NAK from the device, it resends the DATA0 packet.
If the device sent an ACK packet and receives the data packet
with the same sequence number, the device acknowledges
the data packet but ignores the data as a duplicate.

Start of Frame

Start of Frame (SOF) packet, shown in Figure 21, is used to
synchronize isochronous and polled data flows. The 11-bit
frame number is incremented by one in each consecutive SOF.

Handshake Packets

Handshake packets such as data packet accepted (ACK) and
data packet not accepted (NAK) are composed of the Sync
byte, PID byte and EOP as seen in Figure 18.

Token Packets

Host sent token packets are composed of the SYNC, PID
followed by two bytes composed of an 11-bit address and
5-bit cyclic redundancy check (CRC) (Figure 19).

The OUT, IN and SETUP tokens 11-bit address is subdivided
into a 7-bit device address and a 4-bit endpoint identifier.
Address zero is special and is for a device that has not been
assigned an address at the beginning of the enumeration
process. Later in the enumeration process the host assigns a
nonzero address to the device.

All devices have an endpoint zero. Endpoint zero is used for
device control and status. Other device endpoints are for data
sources and/or sinks.

The host sends an OUT token to a device followed by a data
packet. The host sends an IN token to a device and expects
to receive a data packet or handshake packet such as NAK
from the device.

Figure 18. Handshake packet organization.

Figure 20. Data Packets with the PID of DATA0 or DATA1.

Figure 19. OUT, IN and SETUP token packet organization.

Figure 21. Start of frame packets.

Sync PID EOP

Sync PID Data
16-bit
CRC

EOP

Sync PID
11-bit

Address
5-bit
CRC

EOP

Sync PID
Frame

Number
5-bit
CRC

EOP

Application Note

www.tektronix.com/oscilloscopes14

A TDP1000 Differential Probe is used to probe a USB
extension cable between the computer and the USB memory
device. Before connecting the probe to the cable, we use the
TDP1000 menu button on the probe to AutoZero the probe’s
4.25 V range.

To define a USB bus, we go to the bus menu and select USB
from the list of supported standards. We then follow the setup
buttons from left to right to define the parameters of our bus:
speed, source channels, type of probe, and thresholds. The
full-speed preset 1.4 V and -1.4 V thresholds are used in this
example.

First, we can check the enumeration process by triggering on
the SETUP token. After enumeration, we can verify the Start
of Frame (SOF) packets by triggering on them and verifying
the speed by checking if the J idle state is positive or by
measuring the bit width of the SOF SYNC field.

Next, we can configure the oscilloscope to trigger on a NAK
token and then put the oscilloscope in Single acquisition
mode. We then have the computer request data from the
memory device. If the memory device is ready to transfer data,
the oscilloscope will not trigger. But, if the memory device is
not ready to transfer data, it will send a NAK in response to
the computer host IN token and the oscilloscope will trigger
on the NAK. Figure 22 shows the NAK acquisition.

Working with USB 2.0

USB serial triggering and analysis support is available on
select Tektronix oscilloscopes (see Appendix A). For low-
speed and full-speed USB, trigger, decode and search
support is provided by all of the oscilloscope models. For
high-speed USB, a ≥1 GHz oscilloscope model is required.

As an example, the data latency performance of a full-speed
memory device is checked by seeing if the memory device
responds with NAK to the computer IN token request for data
from the memory device.

Figure 22. Full-speed memory device responded with a NAK to the host first IN token
request at cursor A.

www.tektronix.com/oscilloscopes 15

Debugging Serial Buses in Embedded System Designs

We can also copy the oscilloscope trigger settings to be the
search criteria for Wave Inspector. Wave Inspector will search
through the entire acquisition looking for every instance of a
NAK. In this case, Wave Inspector found 11 NAKs. The first
NAK is at the trigger position and the other 10 NAKs are after
the trigger. All NAKs are in response to the computer host
resending the IN token. Each NAK is easily viewed by using
Wave Inspector next and previous front-panel buttons to jump
to each marked NAK.

Available USB triggering capability includes the following
types:

 SYNC

 Reset

 Suspend

 Resume

 End of Packet (EOP)

 Token (Address) Packet

– SETUP, IN, OUT and SOF

 Data Packet

– Any data value, DATA0, DATA1, DATA2 or MDATA

– Data matching with up to 16 data bytes of pattern

 Handshake packets

– Any handshake value, or ACK, NAK, STALL, or NYET

 Special packets

– Reserved, PRE, or ERR, SPLIT, or PING

 Error types include PID Check Bits, Token CRC5, Data
CRC16 or Bit stuffing

Wave Inspector can also search on all of the same criteria
used for triggering.

With Tektronix oscilloscopes, you can easily capture and
analyze USB 2.0 signals, protocol, and data and then
correlate them to other analog and digital signals to provide
you with complete design visibility.

Figure 23. Decoded High-speed USB 2.0 waveform captured with serial triggering on
an MSO5204 with option SR-USB.

Application Note

www.tektronix.com/oscilloscopes16

The Ethernet data frame format is defined by the IEEE 802.3
standard and contains seven fields, as shown in Figure 24.

The Preamble is seven bytes long consisting of an alternating
pattern of ones and zeros for synchronization.

The Start-of-frame Delimiter is a single byte with alternating
ones and zeros but ending in two ones.

The Destination and Source Media Access Control (MAC)
Addresses are each six bytes long, transmitted in most-
significant to least-significant bit order. Each Ethernet node
is assigned a unique MAC address which is used to specify
both the destination and the source of each data packet. It
thus forms the basis of most of the Link layer (OSI Layer 2)
networking upon which upper layer protocols rely to produce
complex, functioning networks.

The Length/Type field is a two-byte value. If the decimal value
of Length/Type is ≤1500, it represents the number of data
bytes in the data field. If the value of Length/Type is >1536
(0x0600), it is an EtherType value which specifies the protocol
that is encapsulated in the payload of the Ethernet frame. (For
example, EtherType is set to 0x0800 for IPv4.)

The Data packet contains 46 to 1500 bytes. If the data is less
than 46 bytes long, the data field is padded to be 46 bytes long.

The Frame Check Sequence is a 32-bit cyclic redundancy
check (CRC) and provides error checking across the
Destination Address, Source Address, Length/Type and
Data fields.

Finally, after each frame has been sent, transmitters are
required to transmit a minimum of 12 bytes of idle characters
before transmitting the next frame, or they must remain idle
for an equal amount of time by de-asserting the transmit
enable signal.

Ethernet

Background

Ethernet is a family of frame-based computer networking
technologies for local area networks (LANs), initially developed
at Xerox PARC in the early 1970s. The first standard draft was
published in 1980 by the Institute of Electrical and Electronics
Engineers (IEEE). Approval of IEEE 802.3 CSMA/CD occurred
in 1982 and the international ISO/IEEE 802.3 standard was
approved in 1984.

How It Works

Two of the most common versions of Ethernet are 10BASE-T
and 100BASE-TX which are found on most personal
computers. The leading number represents the data rate in
Mb/s. BASE indicates that the signals are baseband signals
and there is no RF signal modulation. The T denotes the
twisted pair wires that are in the LAN cable that is used
between network nodes.

The popularity of 10BASE-T and 100BASE-TX and its
decreasing hardware implementation cost has caused it to be
incorporated in an increasing number of embedded systems
designs.

Ethernet provides peer-to-peer packet-based communication,
enabling direct point-to-point communication. At the physical
layer, the 10BASE-T and 100BASE-TX signals transport
address, control, data, and clock information. The data
is transferred in sequences of data bytes called packets.
Ethernet packets can carry other, higher-level protocol packets
inside of them. For example, an Ethernet packet may contain
an Internet Protocol (IP) packet, which in turn may contain
a Transmission Control Protocol (TCP) packet. This signal
complexity makes isolating events of interest difficult when
analyzing 10BASE-T and 100BASE-TX waveforms.

Figure 24. IEEE 802.3 standard Ethernet Frame Format.

Type Preamble

Start-of-
frame
Delimiter

Destination
Address

Source Ad-
dress

Length/
Type Data + Pad

Frame
check
sequence

Bytes 7 1 6 6 2 46-1500 4

www.tektronix.com/oscilloscopes 17

Debugging Serial Buses in Embedded System Designs

The oscilloscope can trigger on Ethernet packet content such
as Start Frame Delimiter, MAC addresses, MAC length/type,
MAC client data, Q-tag control information, IP header, TCP
header, TCP/IPv4 client data, End of Packet, Idle (100BASE-
TX and DPO4ENET only), and FCS (CRC) errors.

The decoded display provides a higher-level, combined
view of the individual signals that make up 10BASE-T and
100BASE-TX, making it easy to identify where packets begin
and end and identifying sub-packet components such as
preamble, SFD, MAC addresses, Data, FSC, errors, etc. Each
packet on the bus is decoded, and the value can be displayed
in hex, binary, or ASCII in the bus waveform.

In addition to seeing decoded packet data on the bus
waveform itself, you can view all captured packets in a tabular
view much like you would see in a software listing. Packets
are time stamped and listed consecutively with columns for
each component (Time, Destination Address, Source Address,
Length, Data, FCS/CRC, Errors).

Serial triggering is very useful for isolating the event of
interest, but once you’ve captured it and need to analyze
the surrounding data, what do you do? Simply use Wave
Inspector to automatically search through the acquired data
for user-defined criteria including serial packet content. Each
occurrence is highlighted by a search mark. Rapid navigation
between marks is as simple as pressing the Previous (←) and
Next (→) buttons on the oscilloscope front panel.

Working With Ethernet

Ethernet is becoming widely used in embedded designs
today. Analyzing Ethernet traffic, both at the physical and
protocol layers, can provide insight into the operation of other
subsystems in the embedded design. However, a single
differential Ethernet signal includes address, control, data,
and clock information, which can make isolating events of
interest difficult. Ethernet Serial Triggering and Analysis options
transform select Tektronix oscilloscopes into robust tools for
debugging 10BASE-T and 100BASE-TX-based systems with
automatic trigger, decode, and search.

Figure 25. 10BASE-T decode display.

Application Note

www.tektronix.com/oscilloscopes18

When connecting two RS-232 devices, a null modem is
commonly required. This device swaps several lines, including
the Tx and Rx lines. That way, each device can send data on
its Tx line and receive data on its Rx line.

Table 5 shows the pinout used for a 9-pin connector,
commonly used with RS-232 signals. Remember that if
your signal has passed through a null modem, many of the
signals will be swapped. Most importantly, Tx and Rx will be
swapped.

RS-232

Background

RS-232 is a widely-used standard for serial communication
between two devices over a short distance. It is best known
for its use in older PC serial ports, but it is also used in
embedded systems as a debug port or for linking two devices.

The RS-232-C standard was introduced in 1969. The
standard has been revised twice since then, but the changes
are minor and the signals are interoperable with RS-232-C.
There are also related standards, such as RS-422 and
RS-485, which are similar but use differential signaling to
communicate over longer distances.

How it Works

The two devices are referred to as the DTE (data terminal
equipment) and DCE (data circuit-terminating equipment). In
some applications, the DTE device controls the DCE device;
in other applications, the two devices are peers and the
distinction between DTE and DCE is arbitrary.

The RS-232 standard specifies numerous signals, many
of which are not commonly used. The two most important
signals are Transmitted Data (Tx) and Received Data (Rx). Tx
carries data from the DTE to the DCE. The DTE device’s Tx
line is the DCE device’s Rx line. Similarly, Rx carries data from
the DCE to the DTE.

The RS-232 standard does not specify which connectors
to use. Twenty-five-pin and nine-pin connectors are most
common. Other connectors have ten, eight, or six pins. It’s
also possible to connect two RS-232 devices on the same
board, without using standard connectors.

Signal Abbreviation Pin

Carrier Detect DCD 1

Received Data Rx 2

Transmitted Data Tx 3

Data Terminal Ready DTR 4

Common Ground G 5

Data Set Ready DSR 6

Request to Send RTS 7

Clear to Send CTS 8

Ring Indicator RI 9

Table 5. Common RS-232 connector pinout.

www.tektronix.com/oscilloscopes 19

Debugging Serial Buses in Embedded System Designs

Figure 26 shows one byte of RS-232 data. The byte is
composed of these bits.

 Start - The byte begins with a start bit.

 Data - Several bits of data follow.
Eight bits of data is the most common; some applications
use seven bits of data. Even when only seven bits are
transmitted, the data is often informally referred to as a
byte. In UART to UART communication, 9 bit data words
are sometimes used.

 Parity - An optional parity bit.

 Stop - 1, 1.5, or 2 stop bits.

An RS-232 bus does not have a clock line. Each device uses
its own clock to determine when to sample the data lines. In
many designs, a UART uses the rising edges of the Tx and Rx
signals to synchronize its clock with the other device’s clock.

When probing RS-232 signals, it is often helpful to use
a breakout box. This device allows you to easily probe
the signals inside an RS-232 cable. Breakout boxes are
inexpensive and readily available from electronics dealers.

The RS-232 standard does not specify the content
transmitted across the bus. ASCII text is most common, but
binary data is also used. The data is often broken up into
packets. With ASCII text, packets are commonly terminated
by a new line or carriage return character. With binary data
other values, such as 00 or FF hex are commonly used.

Devices often implement RS-232 using a universal
asynchronous receiver/transmitter (UART). UARTs are widely
available in off-the-shelf parts. The UART uses a shift register
to convert a byte of data into a serial stream, and vice versa.
In embedded designs, UARTs can also communicate directly
without the use of RS-232 transceivers.

Figure 26. RS-232 byte structure.

Start

1 bit 1 bit

StopData0

1 bit

Data1

1 bit

Data2

1 bit

Data3

1 bit

Data4

1 bit

Data5

1 bit

Data6

1 bit

Data7
(opt.)

1 bit 1-2 bits

Parity
(opt.)

Application Note

www.tektronix.com/oscilloscopes20

Working With RS-232

Serial triggering and analysis for the RS-232 bus is available
on most Tektronix oscilloscopes (see Appendix A). You
can view your RS-232, RS-422, RS-485, or UART data
conveniently on your oscilloscope, without needing to attach
to a PC or a specialized decoder.

Using the front-panel bus buttons we can define an RS-232
bus by entering basic parameters, such as the channels being
used, bit rate, and parity (see Figure 27).

In this example, we have chosen ASCII decoding; the
oscilloscope can also display RS-232 data as binary or hex.

Imagine you have a device that polls a sensor for data over an
RS-232 bus. The sensor isn’t responding to requests for data.
You want to find out if the sensor isn’t receiving the requests,
or if it is receiving the requests but ignoring them.

First, probe the Tx and Rx lines and set up a bus on the
oscilloscope. Then set the oscilloscope to trigger when the
request for data is sent across the Tx line. The triggered
acquisition is shown in Figure 28.

Here, we can see the Tx line on digital channel 1, and the
Rx line on digital channel 0. But we’re more interested in
the decoded data, shown above the raw waveforms. We’ve
zoomed in to look at the response from the sensor. The
overview shows the request on the Tx line and the response
on the Rx line. The cursors show us that the reply comes
around 37 ms after the end of the request. Increasing the
controller’s timeout fixes the problem by giving enough time for
the sensor to reply.

The oscilloscope’s RS-232 trigger includes these capabilities:

 Tx Start Bit - triggers on the bit indicating the start of a byte.

 Tx End of Packet - triggers on the last byte in a packet.
A packet can be ended by a specific byte: Null (00 hex),
linefeed (0A hex), carriage return (0D hex), space (20 hex),
or FF hex.

 Tx Data - triggers on up to 10 bytes of user-specified data
values.

 Rx Start Bit, Rx End of Packet, and Rx Data - these are like
the Tx triggers, but on the Rx line.

With Tektronix oscilloscopes, you can easily view RS-232
signals, analyze them, and correlate them to other activity in
your device.

Figure 28. Measuring time delay between messages on two RS-232 buses.

Figure 27. RS-232 bus set-up menu.

www.tektronix.com/oscilloscopes 21

Debugging Serial Buses in Embedded System Designs

How It Works

The CAN/CAN FD bus is a balanced (differential) 2-wire
interface running over a Shielded Twisted Pair (STP), Un-
shielded Twisted Pair (UTP), or ribbon cable. Each node
uses a male 9-pin D connector. Non Return to Zero (NRZ)
bit encoding is used with bit stuffing to ensure compact
messages with a minimum number of transitions and high
noise immunity. The CAN bus interface uses an asynchronous
transmission scheme where any node may begin transmitting
anytime the bus is free. Messages are broadcast to all
nodes on the network. In cases where multiple nodes initiate
messages at the same time, bitwise arbitration is used to
determine which message is higher priority. Messages can be
one of four types: Data Frame, Remote Transmission Request
(RTR) Frame, Error Frame, or Overload Frame. Any node on
the bus that detects an error transmits an error frame which
causes all nodes on the bus to view the current message as
incomplete and the transmitting node to resend the message.

CAN/CAN FD

Background

The Controller Area Network (CAN) was originally developed
in the 1980s by the Robert Bosch GmbH as a low cost
communications bus between devices in electrically noisy
environments. Mercedes-Benz became the first automobile
manufacturer in 1992 to employ CAN in their automotive
systems. Today, every automotive manufacturer uses CAN
controllers and networks to control a variety of Electronic
Control Units (ECUs) in their automobiles. It is the primary bus
used for engine timing controls, anti-lock braking systems and
power train controls to name a few. And due to its electrical
noise tolerance, minimal wiring, excellent error detection
capabilities and high data transfer speeds, CAN is rapidly
expanding into other applications such as industrial control,
marine, medical, aerospace, and more.

As vehicle networks have evolved to support many more
functions, a urgent need has arisen to support faster data
communication between nodes. This has led to CAN FD, a
higher speed version of CAN which can achieve a max data
rate of 8 Mbps with a payload up to 64 bytes long compared
to the max data rate of 1 Mbps and payload of 8 bytes for
CAN. The first version of the CAN FD standard was released
in 2012 but it was later updated into an ISO standard called
ISO CAN FD in 2015. The ISO version introduced additional
safeguards to improve communication reliability. The original
version is now known as non-ISO CAN FD and is not
compatible with ISO CAN FD.

Application Note

www.tektronix.com/oscilloscopes22

 Data – The CAN data field consists of 0 to 8 bytes of data.
CAN FD supports 0 to 8 bytes but has an increased pay-
load ability to support 12, 16, 20, 32, 48 or 64 bytes.

 CRC - A 15 bit cyclic redundancy check code and a reces-
sive delimiter bit is used in CAN. CAN FD uses 17 bits (plus
CRC delimiter bit) for payloads ≤ 16 bytes or 21 bits ((plus
CRC delimiter bit) for ≥16 bytes. There are 4 additional stuff
bits used for CAN FD.

 ACK - The Acknowledge field is two bits long. The first is
the slot bit, transmitted as recessive, but then overwritten
by dominant bits transmitted from any node that success-
fully receives the transmitted message. The second bit is a
recessive delimiter bit. There is a slight difference in CAN FD
where the receiver recognizes 2 bit times as a valid ACK.

 EOF - Seven recessive bits indicate the end of frame (EOF).

The intermission (INT) field of three recessive bits indicates
the bus is free. Bus Idle time may be any arbitrary length
including zero. A number of different data rates are defined,
with 1Mb/s being the fastest for CAN and 8 Mb/s the fastest
for CAN FD. All modules must support at least 20 kb/s. Cable
length depends on the data rate used. Normally all devices in
a system transfer information at uniform and fixed bit rates.
The maximum line length can be thousands of meters at low
speeds; 40 meters at 1 Mb/s is typical. Termination resistors
are used at each end of the cable.

Overload frames are initiated by receiving devices to indicate
they are not ready to receive data yet. Data frames are used
to transmit data while Remote frames request data. Data and
Remote frames are controlled by start and stop bits at the
beginning and end of each frame and include the following
fields: Arbitration field, Control field, Data field, CRC field and
an ACK field as shown Figure 29.

 SOF - The frame begins with a start of frame (SOF) bit
which is the same for CAN and CAN FD.

 Arbitration - The CAN Arbitration field includes an Identi-
fier (address) and the Remote Transmission Request (RTR)
bit used to distinguish between a data frame and a data
request frame, also called a remote frame. The identifier
can either be standard format (11 bits - version 2.0A) or
extended format (29 bits - version 2.0B). CAN FD shares
the same addressing as CAN for standard and extended
formats but removes the RTR bit and maintains a dominant
r1 bit.

 Control - The CAN Control Field consists of six bits includ-
ing the Identifier Extension (IDE) bit which distinguishes
between a CAN 2.0A (11 bit identifier) standard frame and
a CAN 2.0B (29 bit identifier) extended frame. The Control
Field also includes the Data Length Code (DLC). The DLC is
a four bit indication of the number of bytes in the data field
of a Data frame or the number of bytes being requested by
a Remote frame. CAN FD uses eight or nine bits in the Con-
trol Field and also uses the IDE, r0 and DLC bits. Three ad-
ditional bits are added that include Extended Data Length
(EDL) used to determine if packet is CAN or CAN FD, Bit
Rate Switch (BRS) used to separate arbitration phase from
data phase and Error State Indicator (ESI). The same four
bit DLC is used differently in CAN FD for lengths ≥ 8.

Figure 29. CAN and CAN FD.

CAN 2.0 SOF

1 bit

Arbitration Field

11 bits (Std ID)

29 bits (Ext ID)

Control Field

6 bits

Data Field

0-8 bytes

CRC Field

16 bits

ACK

2 bits

EOF

7 bits

INT

3 bits

CAN FD SOF

1 bit

Arbitration Field

12 bits (Std ID)

32 bits (Ext ID)

Control Field

8 or 9 bits

Data Field

0-64 bytes

CRC Field

18 or 22

bits

ACK

2 bits

EOF

7 bits

INT

3 bits

www.tektronix.com/oscilloscopes 23

Debugging Serial Buses in Embedded System Designs

Working with CAN

Several options enable CAN and CAN FD serial triggering
and analysis on multiple Tektronix oscilloscope families (see
Appendix A). Using the front panel Bus buttons we can
define a CAN or CAN FD bus by simply entering the basic
parameters of the bus including the type of CAN or CAN FD
signal, the input channel, the bit rate, threshold and sample
point (as a percent of bit time), see Figure 30. Imagine you
need to make timing measurements associated with the
latency from when a driver presses the Passenger Window
Down switch to when the CAN module in the driver’s
door issues the command and then the time to when the
passenger window actually starts to move. By specifying
the ID of the CAN module in the driver’s door as well as the
data associated with a “roll the window down” command,
you can trigger on the exact data frame you’re looking for.
By simultaneously probing the window down switch on the
driver’s door and the motor drive in the passenger’s door this
timing measurement becomes exceptionally easy, as shown in
Figure 31.

The white triangles in the figure are marks that we’ve placed
on the waveform as reference points. These marks are added
to or removed from the display by simply pressing the Set/
Clear Mark button on the front panel of the oscilloscope.
Pressing the Previous and Next buttons on the front panel
causes the zoom window to jump from one mark to the next
making it simple to navigate between events of interest in the
acquisition.

Figure 31. Triggering on specific identifier and Data on a CAN bus and decoding all
messages in the acquisition.

Figure 30. CAN bus setup menu.

Application Note

www.tektronix.com/oscilloscopes24

Now imagine performing this task without these capabilities.
Without the CAN/CAN FD triggering you would have to trigger
on the switch itself, capture what you hope is a long enough
time window of activity and then begin manually decoding
frame after frame after frame on the CAN bus until you finally
find the right one. What could have taken tens of minutes or
hours before can now be accomplished in moments.

The oscilloscope's powerful CAN/CAN FD triggering capability
includes the following types:

 Start of Frame – trigger on the SOF field.

 Frame Type – choices are Data Frame, Remote Frame, Er-
ror Frame, and Overload Frame.

 Identifier – trigger on specific 11 or 29 bit identifier values
with Read / Write qualification.

 Data – trigger on 1-8 bytes of user specified CAN or CAN
FD data. Larger CAN FD payload uses a trigger byte offset
to specific a precise distance into the packet comparing a
specific block of 1-8 bytes.

 Ack – trigger anytime the receiving device does not provide
an acknowledge.

 End of Frame – trigger on the EOF field.

These trigger types enable you to isolate virtually anything
you’re looking for on a CAN/CAN FD bus effortlessly.
Triggering is just the beginning though. Troubleshooting will
often require inspecting message content both before and
after the trigger event. A simple way to view the contents of
multiple messages in an acquisition is with the Event Table, as
shown in Figure 32.

The event table shows decoded message content for
every message in an acquisition in a tabular format with
timestamps. This makes it easy to not only view all the traffic
on the bus but also enables easy timing measurements
between messages. Event Tables are available for all types of
buses the oscilloscope supports.

The setup and operation for CAN FD is very similar to CAN
since it shares many of the same setup parameters. Figure 33
shows the configuration menu for choosing between the CAN
2.0 or CAN FD standard, ISO and non-ISO versions and the
standard and FD bit rates. The arbitration phase bit rate will
be the same for CAN and CAN FD (labeled “Bit Rate”) while
the FD bit rate will correspond to the higher CAN FD bit rate.

Figure 32. CAN event table.

Figure 33. Configuration menu for choosing between the CAN 2.0 or CAN FD standard,
ISO and non-ISO versions and the standard and FD bit rates

www.tektronix.com/oscilloscopes 25

Debugging Serial Buses in Embedded System Designs

LIN

Background

The Local Interconnect Network (LIN) bus was developed by
the LIN consortium in 1999 as a lower cost alternative to the
CAN bus for applications where the cost, versatility, and speed
of CAN were overkill. These applications typically include
communications between intelligent sensors and actuators
such as window controls, door locks, rain sensors, windshield
wiper controls, and climate control, to name a few.

However, due to its electrical noise tolerance, error detection
capabilities, and high speed data transfer, CAN is still used
today for engine timing controls, anti-lock braking systems,
power train controls and more.

How It Works

The LIN bus is a low-cost, single-wire implementation based
on the Enhanced ISO9141 standard. LIN networks have
a single master and one or more slaves. All messages are
initiated by the master with only one slave responding to each
message, so collision detection and arbitration capabilities
are not needed as they are in CAN. Communication is based
on UART/SCI with data being sent in eight-bit bytes along
with a start bit, stop bit and no parity. Data rates range from
1 kb/s to 20 kb/s. While this may sound slow, it is suitable for
the intended applications and minimizes EMI. The LIN bus is
always in one of two states: active or sleep. When it’s active,
all nodes on the bus are awake and listening for relevant bus
commands. Nodes on the bus can be put to sleep by either
the Master issuing a Sleep Frame or the bus going inactive for
longer than a predetermined amount of time. The bus is then
awakened by any node requesting a wake up or by the master
node issuing a break field.

LIN frames consist of two main parts, the header and
the response. The header is sent by the master while the
response is sent by the slave. The header and response each
have subcomponents as shown in Figure 34.

Figure 34. The structure of a LIN frame.

Frame

Header

Break Field Sync Field Data 1 Data 2 Data N Checksum FieldIdentifier Field

Response

Response Space

Application Note

www.tektronix.com/oscilloscopes26

Header Components:

 Break Field – the break field is used to signal the beginning
of a new frame. It activates and instructs all slave devices to
listen to the remainder of the header.

 Sync Field – the sync field is used by the slave devices to
determine the baud rate being used by the master node
and synchronize themselves accordingly.

 Identifier Field – the identifier specifies which slave device is
to take action.

Response Components:

 Data – the specified slave device responds with one to eight
bytes of data.

 Checksum – computed field used to detect errors in data
transmission. The LIN standard has evolved through several
versions that have used two different forms of checksums.
Classic checksums are calculated only over the data bytes
and are used in version 1.x LIN systems. Enhanced check-
sums are calculated over the data bytes and the identifier
field and are used in version 2.x LIN systems.

Working with LIN

LIN support on Tektronix oscilloscopes is also available via
several different serial triggering and analysis options (see
Appendix A). Using the front panel Bus buttons we can define
a LIN bus by simply entering the basic parameters of the
bus such as the LIN version being used, the bit rate, polarity,
threshold, and where to sample the data (as a percent of bit
time). The LIN setup menu along with a decoded LIN frame is
shown in Figure 35.

Figure 35. LIN bus setup menu and decoded frame.

www.tektronix.com/oscilloscopes 27

Debugging Serial Buses in Embedded System Designs

A powerful feature of the oscilloscope is the ability to define
and decode up to 16 serial buses simultaneously. Going back
to our earlier example with CAN bus; now imagine that the
window controls are operated by a LIN bus. When the driver
presses the Passenger Window Down control, a message
is initiated on a LIN bus in the driver door, passed through
a central CAN gateway and then sent on to another LIN
network in the passenger door. In this case, we can trigger on
the relevant message on one of the buses and capture and
decode all three buses simultaneously, making it exceptionally
easy to view traffic as it goes from one bus to another through
the system. This is shown in Figure 36 where we’ve triggered
on the first LIN message and captured all three buses.

The oscilloscope's LIN triggering capability includes the
following types:

 Sync – trigger on the sync field Identifier – trigger on a
specific identifier

 Data – trigger on 1-8 bytes of specific data values or
data ranges

 Identifier & Data – trigger on a combination of both
identifier and data

 Wakeup Frame – trigger on a wakeup frame

 Sleep Frame – trigger on a sleep frame

 Error – trigger on sync errors, ID parity errors, or
checksum errors

These trigger types allow you to isolate anything you’re looking
for on a LIN bus faster than ever before. And with the other
advanced serial features found in Tektronix oscilloscopes such
as event tables and search & mark, debugging LIN based
automotive designs has never been easier.

Figure 36. Simultaneous capture and decode of multiple automotive serial buses.

Application Note

www.tektronix.com/oscilloscopes28

How It Works

MIL-STD-1553 asynchronously transmits messages of up to
thirty-two 16-bit data words at bit rates of up to 10 Mb/s over
shielded twisted-pair and twinax cabling. A 1553 network
uses time-division multiplexed half-duplex communication
to transmit data over a single cable. For safety-critical
applications, dual redundant buses are commonly used
to provide higher-reliability communications. Manchester
II bi-phase encoding is used to allow direct or transformer
coupling. Manchester encoding is self-clocking, independent
of the bit sequence, and is DC-balanced. Because the
information in Manchester coded signals is actually contained
in the polarity and timing of the zero-crossings, the 1553 bus
is tolerant of large variations in signal levels.

MIL-STD-1553 defines three distinct word types: Command
words, Data words, and Status words. All are twenty-
bit structures, with a 3-bit synchronization field, a 16-bit
information field, and finally an odd parity bit for simple error
detection. The sync field is an invalid Manchester signal, with
a single transition in the middle of the second bit time. A
command/status sync has a negative transition in the middle,
while a data sync has a positive transition.

Command words, sent by the active bus controller, specify
the function that a remote terminal is to perform. The 16-
bit information field contains a 5-bit terminal address which
uniquely identifies the terminal, a transmit/receive bit, 5 bits
of sub-address or mode, and 5 bits of word count or mode
code.

Data words, transmitted by either a bus controller or remote
terminal, are sent with the most-significant-bit first.

MIL-STD-1553

Background

Similar to the computer industry’s LAN, MIL-STD-1553 is
a military standard that defines the electrical and protocol
characteristics of a serial bus initially designed for data
communication in avionics applications.

MIL-STD-1553 began with the development of the A2-K draft
standard by the Society of Automotive Engineers (SAE) in
1970. After government and military reviews and revisions, it
was released as MIL-STD-1553 (USAF) in 1973. MIL-STD-
1553A was released in 1975 to support all of the branches of
the military, and the SAE then released and froze the MIL-STD-
1553B standard to enable component manufacturers to build
compliant products. The most recent changes, documented
as Notice 2, was released in 1986 to provide a common set of
operational characteristics. The standard is now overseen by
SAE as commercial document AS15531.

Although the standard was widely used in US military
applications, it has also been used commercially in mass-
transportation, spacecraft, and manufacturing applications,
and has been accepted and implemented by NATO and many
other governments.

Command
Word Sync

Terminal
Address T/R

Subaddress /
Mode

Word Count /
Mode Code Parity

Bits 3 5 1 5 5 1

Figure 37. MIL-STD-1553 Command Word Format.

Data Word Sync Data (D15 – D0) Parity

Bits 3 16 1

Figure 38. MIL-STD-1553 Data Word Format.

www.tektronix.com/oscilloscopes 29

Debugging Serial Buses in Embedded System Designs

Status words are returned by remote terminals in response to
a valid message from the controller to acknowledge receipt of
a message or to convey the remote terminal status. The first
5 bits of the 16-bit information field are the terminal address.
The remaining bits represent specific status information,
including Message Error, Instrumentation Bit, Service Request,
Broadcast Command Received, Busy, Subsystem Flag,
Dynamic Bus Acceptance, and Terminal Flag.

Working With MIL-STD-1553

MIL-STD-1553 Serial Triggering and Analysis options are
available on several Tektronix oscilloscope families (see
Appendix A).

You can easily connect to a 1553 bus using passive probes
on any of the analog channels and set up the bus parameters
by pressing the front panel bus button and the on-screen
menu. To isolate specific events on the MIL-STD-1553 bus,
the oscilloscope can trigger on Sync, Word Type, Data Word
value, and Parity Error.

With the available serial triggering and analysis options, you
can easily view MIL-STD-1553 serial signals, analyze them,
and correlate them to other events in your design.

Status
Word Sync

Terminal
Address ME IB SR

Re-
served BCR Busy SF DBA TF Parity

Bits 3 5 1 1 1 3 1 1 1 1 1 1

Figure 39. MIL-STD-1553 Status Word Format.

Figure 40. Decoded display of a MIL-STD-1553 bus

Application Note

www.tektronix.com/oscilloscopes30

FlexRay

Background

FlexRay is a relatively new automotive bus. As cars get
smarter and electronics find their way into more and more
automotive applications, manufacturers are finding that
existing automotive serial standards such as CAN and LIN
do not have the speed, reliability, or redundancy required to
address X-by-wire applications such as brake-by-wire or steer-
by-wire. Today, these functions are dominated by mechanical
and hydraulic systems. In the future they will be replaced by a
network of sensors and highly reliable electronics that will not
only lower the cost of the automobile, but also significantly
increase passenger safety due to intelligent electronic based
features such as anticipatory braking, collision avoidance,
adaptive cruise control, etc.

How It Works

FlexRay is a differential bus running over either a Shielded
Twisted Pair (STP) or an Un-shielded Twisted Pair (UTP) at
speeds up to 10 Mb/s, significantly faster than LIN’s 20 kb/s or
CAN’s 1 Mb/s rates. FlexRay uses a dual channel architecture
which has two major benefits. First, the two channels can
be configured to provide redundant communication in safety
critical applications such as X-by-wire to ensure the message
gets through. Second, the two channels can be configured to
send unique information on each at 10 Mb/s, giving an overall
bus transfer rate of 20 Mb/s in less safety-critical applications.

FlexRay uses a time triggered protocol that incorporates the
advantages of prior synchronous and asynchronous protocols
via communication cycles that include both static and dynamic
frames. Static frames are time slots of predetermined length
allocated for each device on the bus to communicate during
each cycle. Each device on the bus is also given a chance to
communicate during each cycle via a Dynamic frame which
can vary in length (and time). The FlexRay frame is made up
of three major segments; the header segment, the payload
segment, and the trailer segment. These segment each have
their own components as shown in Figure 41.

Figure 41. FlexRay frame structure.

Header Segment Payload Segment

re
se

rv
ed

 b
it

p
ay

lo
ad

 p
re

am
b

le
 in

d
ic

at
o

r

nu
ll

fr
am

e
in

d
ic

at
o

r

sy
nc

 f
ra

m
e

in
d

ic
at

o
r

st
ar

tu
p

 f
ra

m
e

in
d

ic
at

o
r

Trailer Segment

CRCCRCCRCData 0

6 bits

FlexRay Frame 5 + (0 ... 254) + 3 bytes

Data 1 Data 2 Data nCycle
count

Payload
length

Header
CRC

Frame ID

24 bits7 bits

11 111

11 bits 0 ... 254 bytes11 bits

www.tektronix.com/oscilloscopes 31

Debugging Serial Buses in Embedded System Designs

Header Segment Components:

 Indicator Bits – the first five bits are called the indicator bits
and indicate the type of frame being transmitted. Choices
include Normal, Payload, Null, Sync, and Startup.

 Frame ID – the frame ID defines the slot in which the frame
should be transmitted. Frame IDs range from 1 to 2047
with any individual frame ID being used no more than once
on each channel in a communication cycle.

 Payload Length – the payload length field is used to
indicate how many words of data are in the payload
segment. Header

 CRC – a cyclic redundancy check (CRC) code calculated
over the sync frame indicator, the startup frame indicator,
the frame ID and the payload length.

 Cycle Count – the value of the current communication
cycle, ranging from 0-63.

Payload Segment Components:

 Data – the data field contains up to 254 bytes of data.
For frames transmitted in the static segment the first 0 to
12 bytes of the payload segment may optionally be used
as a network management vector. The payload preamble
indicator in the frame header indicates whether the payload
segment contains the network management vector. For
frames transmitted in the dynamic segment the first two
bytes of the payload segment may optionally be used as
a message ID field, allowing receiving nodes to filter or
steer data based on the contents of this field. The payload
preamble indicator in the frame header indicates whether
the payload segment contains the message ID.

Trailer Segment Components:

 CRC – a cyclic redundancy check (CRC) code calculated
over all of the components of the header segment and the
payload segment of the frame.

Dynamic frames have one additional component that follows
the Trailer CRC called the Dynamic Trailing Sequence (DTS)
that prevents premature channel idle detection by the bus
receivers.

Figure 43. Triggering on Frame ID and Cycle Count, Searching through acquired data
for Startup Frames.

Figure 42. FlexRay bus setup menu.

Application Note

www.tektronix.com/oscilloscopes32

Working with FlexRay

FlexRay serial triggering and analysis is available on several
Tektronix oscilloscope families (see Appendix A). To define a
FlexRay bus, we go to the bus menu and select FlexRay from
the list of supported standards. The FlexRay setup menu is
shown in Figure 42.

Next, we use the Define Inputs menu to tell the scope whether
we’re looking at FlexRay channel A or B, what type of signal
we’re probing (differential, half the differential pair, or the logic
signal between the controller and the bus driver), and then
set the thresholds and the bit rate. FlexRay requires two
thresholds to be set when looking at non-Tx/Rx signals as it is
a three-level bus. This enables the oscilloscope to recognize
Data High and Data Low as well as the idle state where both
signals are at the same voltage.

The oscilloscope's powerful FlexRay feature set is illustrated
in Figure 43 where we’ve triggered on a combination of
Frame ID = 4 and Cycle Count = 0, captured approximately
80 FlexRay frames, decoded the whole acquisition and then
had the oscilloscope search through the acquisition to find
and mark all occurrences of sync frames. And all of this was
done with only 100,000 point record lengths. With up to 250
million point record lengths available on some Tektronix scope
families, exceptionally long time windows of serial activity can
be captured and analyzed.

The oscilloscope's FlexRay triggering capability includes the
following types:

 Start of Frame – triggers on the trailing edge of the Frame
Start Sequence (FSS).

 Indicator Bits – trigger on Normal, Payload, Null, Sync, or
Startup frames.

 Identifier – trigger on specific Frame IDs or a range of Frame
IDs.

 Cycle Count – trigger on specific Cycle Count values or a
range of Cycle Count values.

 Header Fields – trigger on a combination of user specified
values in any or all of the header fields including the
Indicator Bits, Frame ID, Payload Length, Header CRC, and
Cycle Count.

 Data – trigger on up to 16 bytes of data. Data window
can be offset by a user specified number of bytes in a
frame with a very long data payload. Desired data can be
specified as a specific value or a range of values.

 Identifier & Data – trigger on a combination of Frame ID and
data.

 End of Frame – trigger on static frames, dynamic frames, or
all frames.

 Error – trigger on a number of different error types including
Header CRC errors, Trailer CRC errors, Null frame errors,
Sync frame errors, and Startup frame errors.

In addition to the triggering and decode features described
above, DPO4AUTOMAX also provides eye diagram analysis of
FlexRay signals to assist in diagnosing physical layer issues.
Simply load the software package on a PC, connect it to the
scope via LAN or USB, and click the Acquire Data button to
get the information rich display shown in Figure 44. Analysis
features include:

 Eye Diagram – built from all messages in the acquisition
with the currently selected frame highlighted in blue.
Easily compare against TP1 or TP4 masks with violations
highlighted in red.

 Decode – currently selected frame is decoded over the
analog waveform while the whole acquisition is decoded in
the bottom part of the display.

Figure 44. DPO4AUTOMAX Eye Diagram analysis of a FlexRay signal.

www.tektronix.com/oscilloscopes 33

Debugging Serial Buses in Embedded System Designs

 Time Interval Error (TIE) Plot – provides for easy visual
investigation of jitter within frames.

 Error Checking – errors are highlighted in red. Header and
trailer CRCs are calculated and compared with transmitted
frame.

 Timing Measurements – rise time, fall time, TSS duration,
frame time, average bit time, previous sync, next sync,
previous cycle frame, next cycle frame.

 Find – isolate the particular frame of interest based on
packet content.

 Save – save decoded acquisition to a .csv file for further
offline analysis.

This comprehensive set of FlexRay solutions, along with the
previously discussed CAN and LIN capabilities, make Tektronix
oscilloscopes the ultimate debugging tool for automotive
designs.

Figure 45. Searching on specified identifier and Data in a CAN bus acquisition.

Application Note

www.tektronix.com/oscilloscopes34

Audio Buses

Background

I2S, or “I squared S”, stands for Inter-IC Sound. It was
originally developed by Philips in the mid-1980s to provide a
standardized communication path for digital audio signals in
consumer electronic devices such as CD players and digital
televisions. The consumer electronics market has continued
to evolve over the last 20 years and so have the applications
for the I2S bus. Today it’s commonly found in cell phones, MP3
players, set top boxes, professional audio equipment and
gaming systems to name a few.

How It Works

The I2S bus is a master/slave 3-wire serial communications
bus. The three signals are clock (SCK), word select (WS),
and data (SD). Typically, the transmitter is the Master and the
receiver is the Slave. However, in some cases, the receiver can
act as the Master by generating the clock and the word select
signals. Or the transmitter and the receiver can be controlled
by another device if desired. These configuration scenarios are
illustrated in Figure 46.

Serial data is transmitted in two’s complement with the most
significant bit (MSB) first. The MSB is transmitted first because
the transmitter and receiver may have different word lengths.
It isn’t necessary for the transmitter to know how many bits
the receiver can handle, nor does the receiver need to know
how many bits are being transmitted. When the system word
length is greater than the transmitter word length, the word
is truncated (least significant data bits are set to ‘0’) for data
transmission. If the receiver is sent more bits than its word
length, the bits after the least significant bit (LSB) are ignored.
On the other hand, if the receiver is sent fewer bits than its
word length, the missing bits are set to zero internally. And so,
the MSB has a fixed position, whereas the position of the LSB
depends on the word length. The transmitter always sends the
MSB of the next word one clock period after the WS changes.

Figure 46. Different I2S bus configurations.

TRANSMITTER

TRANSMITTER = MASTER

data SD

word select WS

clock SCK

RECEIVER TRANSMITTER

RECEIVER = MASTER

SD

WS

SCK

CONTROLLER = MASTER

RECEIVER

TRANSMITTER
SD

WS

SCK

RECEIVER

CONTROLLER

www.tektronix.com/oscilloscopes 35

Debugging Serial Buses in Embedded System Designs

Figure 47 part 1. I2S Format.

Figure 47 part 2. LJ Format.

Figure 47 part 3. RJ Format.

SCK

WS

SD MSB

WORD n-1
RIGHT CHANNEL

WORD n
LEFT CHANNEL

WORD n+1
RIGHT CHANNEL

MSBLSB

SCK

WS

SD MSB LSB

Right ChannelLeft Channel

MSB LSB

SCK

WS

SD
MSB LSB MSB LSB

Application Note

www.tektronix.com/oscilloscopes36

There are several variants of the I2S bus that are also
commonly used called Left Justified (LJ), Right Justified (RJ),
and Time Division Multiplexing (TDM). The major difference
between I2S, LJ, and RJ is where the data is placed in time
relative to the Word Select signal. With I2S, the MSB is delayed
one clock after WS. With LJ, the data bits are aligned with WS
and with RJ, the data bits are right aligned with WS. These are
all illustrated in Figure 47. TDM is similar to I2S, LJ, and RJ, but

allows for more than two audio channels. The example shown
in Figure 48 has eight audio channels, each with 32 data bits.

All of these digital audio buses have a very simple data
structure. Many of the other buses we’ve looked at in this
application note have address fields, CRC fields, parity bits,
start/stop bits, and various other indicator bits, but the digital
audio buses simply have data values for each channel.

Figure 48. TDM Format.

MSB

MSB

DAC_A1 DAC_B1 DAC_A2 DAC_A3 DAC_A4DAC_B2 DAC_B3 DAC_B4

MSB MSBLSB

LSB

WS

SCK

256 clks

32 clks

Data
zero

32 clks 32 clks 32 clks 32 clks 32 clks 32 clks 32 clks

SD LSB LSB MSBLSB MSBLSB MSB MSB MSBLSB LSB LSB LSB

www.tektronix.com/oscilloscopes 37

Debugging Serial Buses in Embedded System Designs

Working with Audio Buses

Support for digital audio buses is available on several Tektronix
oscilloscope product families (see Appendix A). Using a front
panel Bus button, we can define an audio bus by simply
entering basic bus parameters such as word size, signal
polarities, bit order, and thresholds. TDM definition also
requires the number of data bits per channel, clock bits per
channel, bit delay, and the number of channels per frame.

Once the bus is setup, you can quickly trigger on specific data
content on the bus, decode entire acquisitions and search
through acquisitions to find the specific data you’re looking
for. In the following example, we’re looking at an I2S bus being
driven by an analog to digital converter (ADC). Channel 1
(yellow) is the clock signal, channel 2 (cyan) is the word select
signal, and channel 3 (magenta) is the data signal. We’ve set
the trigger to look for data values outside a specified range to
see if the signal we’re sampling is hitting the limits of the ADC.
As Figure 49 shows, we did capture an extreme value (-128)
with this Outside Range trigger.

The oscilloscope's powerful audio triggering capability
includes the following types:

 Word Select – trigger on the edge of Word Select that starts
the frame in I2S, LJ, and RJ buses

 Frame Sync – trigger on the Frame Sync signal that starts a
frame in

 TDM Data – trigger on user specified data in the Left Word,
Right Word, or Either Word in I2S, LJ, and RJ. With TDM,
you specify the channel number to look for the data value
in. Data qualifiers include =, ≠, ≤, <, >, ≥, inside range, and
outside range.

As with all the other serial bus types supported by Tektronix
oscilloscopes, these trigger criteria are also available as search
criteria for investigating long acquisitions and the decoded
audio data can be presented in event table format.

MIPI DSI-1 / CSI-2 Buses

Background

Unlike a number of other standards in this document that have
been in the market for decades, Mobile Industry Processor
Interface (MIPI) standards are relatively new and, in some
cases, still evolving. The MIPI Alliance (www.mipi.org) states:

“These specifications establish standards for hardware and
software interfaces which drive new technology and enable
faster deployment of new features and services across the
mobile ecosystem.” “The mobile industry suffers from too
many interfaces which are incompatible yet typically not
differentiated. This leads to incompatibility between products,
redundant engineering investments to maintain multiple
interface technologies, and ultimately higher costs (but most
likely not higher margins/value). MIPI intends to reduce this
fragmentation by developing attractive targets for convergence
which have technical and intellectual property rights benefits
over proprietary alternatives.”

The MIPI Alliance has completed multiple specifications that
are being adopted by numerous mobile products. Two of
these, DSI-1 and CSI-2, are protocol-level specifications for
how information is transmitted between a host processor
and a display chip (DSI-1) and between a host processor
and a camera chip (CSI-2). Both protocols utilize the same
underlying physical layer interfaces developed by the MIPI
Alliance; D-PHY and M-PHY.

Figure 49. Triggering outside a range of values on an I2S bus.

Application Note

www.tektronix.com/oscilloscopes38

How it Works

The D-PHY physical layer specifies a high-speed serial link
between a host processor and another device such as a
display or a camera. A minimum bus configuration is a clock
lane and a single data lane; however, up to four data lanes can
be used for increased bus bandwidth.

Buses operate in one of two modes; low-power and high-
speed. Low-power mode uses single-ended signaling and
embeds the clock in the data. It is typically used for command
and control purposes and has a maximum data transfer rate
of 10 Mb/s. High-speed mode uses differential signaling and is
typically used for fast data transfer. For example, a cell phone
display’s vertical and horizontal synchronization information
may be transmitted in low-power mode as relatively little
information needs to be transmitted and low transfer rates are
adequate. However, the actual video content displayed on the
phone requires large, high-speed data transfers to support
today’s high resolution displays and thus, utilizes high-speed
mode. While the actual maximum transfer rate in high-speed
mode is implementation-specific, the overall bus will typically
operate in the 80 Mb/s – 1 Gb/s range, per lane.

The DSI-1 and CSI-2 protocols specify that information
is transmitted across the D-PHY physical layer using a
combination of short packets and long packets.

Short packets are typically used for command and control
type information such as synchronization and configuration
while long packets are typically used for video content. Short
packets are structured as follows:

 Data Identifier – eight bits that include the Virtual Channel
and Data Type fields which are discussed next.

 Virtual Channel – the virtual channel field specifies which
device on the bus the packet is intended for when more
than one camera or display device is on the bus. With two
bits, up to four devices can share a single bus.

 Data Type – These six bits specify what type of command
or action is being sent and what the data in the Packet Data
field represents and how it’s structured.

 ECC – this is an error correction field that enables single
bit errors to be corrected and 2-bit errors to be detected in
short packets.

Long packets have a few more fields. Long packets are
structured as follows:

Virtual Channel, Data Type, and ECC are the same as in short
packets. Differences from short packets include:

 Word Count – in a long packet, word count replaces
packet data. This 16 bit value specifies the number of
bytes included in the payload data.

 Payload – This field is typically used to send large amounts
of video data via a number of different video formats. Each
format has its own Data Type. The payload field can be
anywhere from 0 to 65,535 (216 -1) bytes long.

 Checksum – this field checks for errors in the payload.

Data
identifier

Short
Packet

Low
Power
State

Low
Power
State

Virtual
Channel

(VC): 2 bits

Data Type
(DT): 6 bits

Packet Data
(PD):

16 bits

ECC: 8
bits

Start
Of

Transmission

End
Of

Transmission

Data
identifier

Long
Packet

Low
Power
State

Virtual
Channel

(VC): 2 bits

Data Type
(DT): 6 bits

Checksum:
16 bits

Word Count
(WC):

16 bits

ECC: 8
bits

Payload (Data):
0 to 216 -1 bytes

Start
Of

Transmission

Low
Power
State

End
Of

Transmission

Figure 50. Short MIPI packet.

Figure 51. Long MIPI packets.

www.tektronix.com/oscilloscopes 39

Debugging Serial Buses in Embedded System Designs

Working with DSI-1 and CSI-2

The SR-DPHY application enables decoding of DSI-1 and
CSI-2 buses. To set up a bus, simply go the Bus Setup Menu,
select Serial, and then select either MIPI DSI-1 or MIPI CSI-2.
In the screenshot below, we’ve selected DSI-1.

To configure the bus we need to specify the types of channels
(analog vs. digital) and probes being used to probe the bus.
When using analog channels, a differential probe is used to
probe the clock and two single-ended probes are used to
probe the data lane. The P6780 differential probe enables
the MSO70000C Series to probe one or more lanes using
the digital channels. One channel is used to probe the clock,
one channel probes the differential signal D+/D-, one channel
probes the single-ended signal D+/GND, and one channel
probes the single-ended signal D-/GND. Therefore, three
analog channels or four digital channels are required to probe
a single-lane DSI-1 or CSI-2 implementation.

Once configured and displayed, the busform shows all the
decoded components of both short packets and long packets
as well as other communications types such as Bus Turn
Around (BTA) and Escape Mode Commands.

By default, the virtual channel and the word count fields are
displayed in decimal. The Data Type field indicates the type of
packet. ECC and Checksum are both displayed in hex. Finally,
for defined data types, the payload field decodes the data
being transmitted into relevant display-type information. In the
example shown above, the first pixel value transmitted in the
payload has a Red value of 255, a Green value of 216, and a
Blue value of 0.

In addition to decoding DSI-1 / CSI-2 acquisitions, you can
also search through long acquisitions to find all occurrences of
the following types of packet content:

 Short packets (specify VC, DT, Direction, and Packet
Data values)

 Long packets (specify VC, DT, Direction, WC, and Data
Payload including Pixel values)

 Stop

 Start of Transmission (SoT)

 End of Transmission (EoT)

 Bus Turnaround (DSI-1 only)

 Escape Mode

 ECC Warning

 ECC Error

 Checksum Error

With the SR-DPHY application and the appropriate Tektronix
oscilloscope (see Appendix A), you can easily decode and
view DSI-1 and CSI-2 serial bus packets, analyze them, and
correlate them to other activity in your device.

Figure 53. MSO70000C digital-channel decoded display of a Packed Pixel Stream, 24-
bit RGB 8-8-8 Format long packet.

Figure 54. MSO70000C analog-channel decoded display of a Packed Pixel Stream,
showing a checksum error.

Figure 52. MIPI DSI-1 Bus Setup.

Application Note

www.tektronix.com/oscilloscopes40

Triggering vs. Search

As we’ve discussed throughout this application note, a
capable triggering system is required to isolate the event of
interest on the serial bus. However, once you’ve acquired
the data (the scope is stopped), and you want to analyze
it, triggering doesn’t apply any more. Wouldn’t it be nice if
the scope had trigger-like resources for analyzing stopped
waveform data?

Tektronix oscilloscopes offer Wave Inspector® and Advanced
Search and Mark, and their powerful search capability. All of
the bus trigger features discussed throughout this document
are also available as search criteria on already acquired data.

For example, in Figure 45 the oscilloscope has searched
through a long acquisition for every CAN message that has
specific address and data content and marked each one with
a hollow white triangle at the top of the display. Navigating
between occurrences is as simple as pressing the front panel
Previous and Next buttons.

Of course, searches are also available for the more traditional
trigger types as well. Search types include edges, pulse
widths, runt, setup & hold times, logic and rise/fall times.

Conclusion
While there are many benefits in transitioning from parallel
to serial buses in embedded systems design, there are also
a number of challenges the design engineer faces. With
traditional test and measurement tools it’s much more difficult
to trigger on the event you’re looking for, it can be nearly
impossible to tell what information is present by just looking
at the analog signal and it’s an extremely time consuming
and error prone process to have to manually decode a long
period of bus activity to diagnose problems. The Tektronix
oscilloscopes change everything. With their powerful trigger,
decode, and search capabilities today’s design engineers
can solve embedded system design issues with exceptional
efficiency.

www.tektronix.com/oscilloscopes 41

Debugging Serial Buses in Embedded System Designs

MSO/DPO70000 Series DPO7000C Series MSO/DPO5000 Series MDO4000C Series MDO3000 Series MSO/DPO2000 Series

Bandwidth 33 GHz, 25 GHz, 23 GHz,
20 GHz, 16 GHz, 12.5 GHz,
8 GHz, 6 GHz, 4 GHz

3.5 GHz, 2.5 GHz, 1 GHz,
500 MHz

2 GHz, 1 GHz, 500 MHz,
350 MHz

1 GHz, 500 MHz,
350 MHz, 200 MHz

1 GHz, 500 MHz, 350 MHz,
200 MHz, 100 MHz

200 MHz, 100 MHz,
70 MHz

Analog Channels 4 4 4 4 2 or 4 2 or 4

Digital Channels 16 (MSO) -- 16 (MSO) 16 (opt.) 16 (opt.) 16 (MSO)

Spectrum
Analyzer
Channels

-- -- -- 1 (opt.) 1 --

Record Length
(All Channels)

Up to 62.5 M (std.)
Up to 250 M (opt.)

25 M (std.)
Up to 125 M (opt.)

25 M (std.)
Up to 125 M (opt.)

20 M 10 M 1 M

Sample Rate
(Analog)

Up to 100 GS/s Up to 40 GS/s Up to 10 GS/s Up to 5 GS/s Up to 5 GS/s 1 GS/s

Color Display 12.1 in. XGA 12.1 in. XGA 10.4 in. XGA 10.4 in. XGA 9 in. WVGA 7 in. WQVGA

Serial Bus
Triggering
and Analysis
Applications

SR-EMBD: I2C, SPI
SR-COMP:
RS-232/422/485 UART
SR-USB: USB 2.0
SR-DPHY: MIPI decoding
SR-AERO:
MIL-STD-1553
SR-AUTO: CAN, LIN,
FlexRay
SR-810B: 8b/10b
decoding
SR-PCIE: PCI Express
SR-ENET: 10/100BASE-T
Ethernet decoding

SR-EMBD: I2C, SPI
SR-COMP:
RS-232/422/485 UART
SR-USB: USB 2.0
SR-DPHY: MIPI decoding
SR-AERO:
MIL-STD-1553
SR-AUTO: CAN, LIN,
FlexRay
SR-810B: 8b/10b
decoding
SR-PCIE: PCI Express
decoding
SR-ENET: 10/100BASE-T
Ethernet decoding

SR-EMBD: I2C, SPI
SR-COMP:
RS-232/422/485 UART
SR-USB: USB 2.0
SR-DPHY: MIPI decoding
SR-AERO:
MIL-STD-1553
SR-AUTO: CAN, LIN,
FlexRay
SR-810B: 8b/10b
decoding
SR-PCIE: PCI Express
decoding
SR-ENET: 10/100BASE-T
Ethernet

DPO4EMBD: I2C, SPI
DPO4USB: USB 2.0
DPO4COMP:
RS-232/422/485/UART
DPO4AUTO:
CAN/CAN FD, LIN
DPO4AUTOMAX:
CAN/CAN FD, LIN, FlexRay
DPO4AUDIO: I2S/LJ/RJ/
TDM
DPO4ENET: 10/100BASE-T
Ethernet
DPO4AERO:
MIL-STD-1553

MDO3EMBD: I2C, SPI

MDO3USB: USB 2.0
MDO3COMP:
RS-232/422/485/UART
MDO3AUTO:
CAN/CAN FD, LIN
MDO3FLEX: FlexRay
MDO3AUDIO:
I2S/LJ/RJ/TDM
MDO3AERO:
MIL-STD-1553

DPO2EMBD: I2C, SPI
DPO2COMP:
RS-232/422/485/UART
DPO2AUTO: CAN, LIN

Number of
Simultaneously
Displayed Serial
Buses

16 16 16 3 2 2

Appendix A: Tektronix offers a range of models to meet your needs and your budget:

Contact Information:
 Australia* 1 800 709 465

Austria 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3759 7627

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3010

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 6917 5000

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not
accessible, call: +41 52 675 3777

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.
10/16 EA 48W-19040-19

tek.com
http://tek.com

